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Introduction

We study the hyperbolicity cones of elementary symmetric polynomials and as the main result
we show that these cones are spectrahedral. This claim was first conjectured by Sanyal [San11]
and he showed that the (n− 1)-th elementary symmetric polynomial in n variables has a spec-
trahedral hyperbolicity cone. In order to study the hyperbolicity cones, we need to introduce
hyperbolic polynomials. This we do in the first chapter. The notion of hyperbolic polynomials
goes back to the theory of partial differential equations (PDE) introduced by Petrovsky and
G̊arding [Brä13, p.1]. Besides the PDE theory, in the last years other mathematical fields such
as combinatorics and convex optimisation increasingly showed interest in hyperbolic polynomi-
als. The first one considering optimisation over hyperbolicity cones was Güler [Gül97].

In order to understand what the aim of studying hyperbolicity cones is, we need to have a
closer look at optimisation. The best known case of optimisation is linear programming (LP).
In this case we consider a linear function with linear equalities and inequalities as constraints.
These constraint sets are polyhedrons. Since LP’s are not sufficient for all optimisation prob-
lems, there is a generalisation, the semi-definite programming (SDP). In SDP’s the constraint
set is a spectrahedron. Every polyhedron is a spectrahedron. Still SDP does not cover all convex
optimisation problems, so a further generalisation of SDP is the hyperbolic programming. The
area considered in a hyperbolic program is a hyperbolicity cone and they are a generalisation of
spectrahedrons.

Another question that might arise when regarding the hyperbolicity cones is how big the set of
hyperbolicity cones is. Peter Lax conjectured in 1958 that all hyperbolicity cones of polynomials
in at most three variables are spectrahedral [LPR03, p.1]. This statement stayed unproven for
more than 40 years but was shown a few years ago [see LPR03; HV07]. However, it remains
the open question whether all hyperbolicity cones are spectrahedral. This question is known as
the Generalised Lax Conjecture [Brä13, p.2, Conjecture 1.1]. Mathematicians are still trying to
prove the generalised conjecture. But until now it has remained unproven. There are not a lot
of indications for the conjecture to be true though. Only some special cases have been shown.
Beside the case of polynomials in at most three variables (Lax-Conjecture), the conjecture is true
for quadratic polynomials (see [NS12]). In 2012, Brändén, a mathematician from Stockholm,
showed that the hyperbolicity cones of elementary symmetric polynomials are spectrahedral. In
order to show this statement, he used an important theorem from graph theory, the Matrix-Tree
Theorem, which goes back to Kirchhoff and Maxwell [Brä13, p.3].

The Matrix-Tree Theorem shows that the spanning tree polynomial of a connected graph has a
linear determinantal representation. Hence the hyperbolicity cones of spanning tree polynomials
belonging to a connected graph are spectrahedral. In the second chapter, we introduce the
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notions and terms used in graph theory such that we are able to prove the Matrix-Tree Theorem
in chapter three. In the last chapter, we recursively construct a graph Gn,k for n ≥ k ≥ 0
such that the corresponding spanning tree polynomial has an elementary symmetric polynomial
as a factor. This will lead to the main result: All hyperbolicity cones of elementary symmetric
polynomials are spectrahedral. For the proof, we follow the idea of Brändén presented in [Brä13].



Chapter 1

Hyperbolic Polynomials and their Cones

In this thesis, we consider hyperbolicity cones of elementary symmetric polynomials. So in a
first step, we need to define the essential terms belonging to the theory of hyperbolicity cones.
This is what we want to do in this chapter. First, we study the hyperbolic polynomials and
we will outline some of its properties. The following section is about the cones of hyperbolic
polynomials, called the hyperbolicity cones. In the last section of this chapter, we are going
to verify that certain directional derivatives of a hyperbolic polynomial is hyperbolic again.
The most important result of this chapter is that all elementary symmetric polynomials are
hyperbolic (see Proposition 1.3.9).

The origin of hyperbolic polynomials is the theory of partial differential equations, introduced
by Petrovsky and G̊arding (see [Brä13, p.1]). But in the last years, there is more and more
interest in the hyperbolic polynomials in other areas of mathematics such as combinatorics and
convex optimization [Brä13, p.1]. Güler, Lewis and Sendov developed the hyperbolic theory for
convex analysis [Ren06, p.1].

1.1 Hyperbolic polynomials

As already mentioned, the definition of hyperbolic polynomials comes from the theory of partial
differential equations. We are going to study hyperbolic polynomials with real coefficients but it
is also possible to do this more generally in a finite dimensional euclidean space, for more details
see [Ren06].

In a first step, we will introduce some notations used in this thesis.

1.1.1 Remark. (a) The natural numbers N are the positive integers, hence they do not con-
tain the 0. For the non-negative integers, we write N0.

(b) We will use the notation [n] := {1, . . . , n} for any positive integer n ∈ N.

(c) For this chapter, we fix an n ∈ N which denotes the number of variables. For any com-
mutative ring R and any vector x ∈ Rn, we write the vector x as an n-tuple of the
form x = (x1, . . . , xn). For our n variables X1, . . . , Xn, X is a notion for the n-tuple
X = (X1, . . . , Xn). As another shortcut, we introduce R[X] := R[X1, . . . , Xn].

(d) Furthermore, we use the multi-index notation. An n-dimensional multi-index is an n-tuple
α = (α1, . . . , αn) ∈ Nn0 of non-negative integers with component-wise multiplication and
addition. The absolute value of a multi-index α ∈ Nn0 is

|α| :=
n∑
k=1

αk ∈ N0.
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For any commutative ring R, we define for an element x = (x1, . . . , xn) ∈ Rn the term xα

through xα := xα1
1 · · ·xαnn .

(e) By the term ‘degree’ of a polynomial p ∈ R[X1, . . . , Xn], we always think of the total
degree of this polynomial p.

1.1.2 Definition. A polynomial p ∈ R[X] = R[X1, . . . , Xn] is called homogeneous if p is a
R-linear combination of monomials of the same degree.

1.1.3 Remark. We regard polynomials, the elements of a polynomial ring R[X] for any com-
mutative ring R, as a finite R-linear combination of monomials in the n variables X1, . . . , Xn

(not as functions in an analytic meaning).
For any ring-extension R′ ⊇ R and any point x ∈ (R′)n, we consider the polynomial evaluation

homomorphism

Φx : R[X]→ R′, p =
∑
α∈Nn0

cαXα 7→ p(x) :=
∑
α∈Nn0

cαxα,

where cα ∈ R for every α ∈ Nn0 and only finitely many cα do not vanish such that we get a finite
sum. For more details see [Bos09, p.58, Satz 5]. Nevertheless, we need to use some continuity
arguments in the following work. For this reason we consider the polynomial function

p̄ : Rn → R′, x = (x1, . . . , xn) 7→ p̄(x) := Φx(p) = p(x)

for a fixed p ∈ R[X]. Instead of p̄(x) we just write p(x) and often we say p is continuous. This
polynomial function p̄ is continuous in x and we often just say that p is continuous [DR11, p.48,
7.4(iii)].

In this work, we are mainly interested in the case R = R with ring-extension R′ = R[T ]. In this
case, the roots of the univariate polynomial p(x + Td), for a multivariate polynomial p ∈ R[X]
and two points x and d in Rn are continuous not only in the coefficients of the polynomial p
but also in x and d. This is because the coefficients are continuous in the points x,d. By this
continuity, we mean:

1.1.4 Proposition. [Bro13, p.23, Satz 16]. Let f =
m∑
i=0

aiT
i ∈ R[T ] be a polynomial of degree

m ∈ N with roots α1, . . . , αm ∈ C (counted with multiplicity). For any sequence (fk)k∈N ⊆
R[T ] of polynomials of degree m converging coefficient-wise to f , i.e. if fk =

m∑
i=0

ai,kT
k for all

k ∈ N, the coefficients ai,k converge to ai for k → ∞ and all i ∈ {0, . . . ,m}. Then the roots
α1,k, . . . , αm,k (with multiplicity) of fk converge to the roots of f , i.e. αi,k → αi for k →∞ and
all i ∈ {0, . . . ,m} after rearranging the roots.

Proof. We show the proposition by induction on the degree m = deg(f) ∈ N. For m = 1, it is

a1,k(α1 − α1,k) = fk(α1).

Since the coefficients a0,k and a1,k of fk converge to the coefficients a0 and a1 of f , it follows
lim
k→∞

fk(α1) = f(α1) = 0. The leading coefficient a1 of f does not vanish. This implies

(α1 − α1,k)
k→∞→ 0.
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So clearly α1,k converges to α1 for k →∞.
For the induction step, we assume for a fixed m > 1 that for all polynomials f ∈ R[T ] of degree

m− 1 and all sequences (fk)k∈N ⊆ R[T ] with deg(fk) = m− 1 converging coefficient-wise to f ,
the zeros α1,k, . . . , αm−1,k of fk converge to the zeros α1, . . . , αm−1 of f for k →∞. We want to
show the statement for m. Again it is

am,k(αm − α1,k) · · · (αm − αm,k) = fk(αm)
k→∞→ f(αm) = 0.

Since am,k → am 6= 0 for k →∞, we get

(αm − α1,k) · · · (αm − αm,k)
k→∞→ 0.

So WLOG, we assume αm,k → αm for k →∞. It remains to show that the other roots converge
as well. For this consider the polynomials

g := am

m−1∏
i=1

(z − αi) and gk := am,k

m−1∏
i=1

(z − αi,k) for all k ∈ N.

Clearly, it is f = (z − αm)g and fk = (z − αm,k)gk for all k ∈ N. Let g =
m−1∑
i=0

biT
i and

gk =
m−1∑
i=0

bi,kT
i denote the coefficients of g and gk for all k ∈ N. Then

am = bm−1, ai = bi−1 − αmbi for i ∈ {0, . . . ,m− 1} and

am,k = bm−1,k, ai,k = bi−1,k − αm,kbi,k for i ∈ {0, . . . ,m− 1}, .

It is easy to see that bm−1,k → bm−1 for k →∞ for the other coefficients, it follows by induction.
So (gk)k∈N converges coefficient-wise to g and deg(g) = deg(gk) = m − 1 for all k ∈ N. The
statement follows by the induction hypothesis.

Now, we start with the theory of hyperbolic polynomials. So first, we define what is meant by
this term.

1.1.5 Definition. [Brä13, p.1]. Let p ∈ R[X] = R [X1, . . . , Xn] be a homogeneous polynomial
of degree m ∈ N0 in the n variables X1, . . . , Xn. We call p hyperbolic in direction d ∈ Rn, if for
every x ∈ Rn the univariate polynomial p(x+Td) ∈ R[T ] has exactly m real roots counted with
multiplicity.

A homogeneous polynomial p ∈ R[X] is said to be hyperbolic if there exists a direction d ∈ Rn
such that p is hyperbolic in direction d.

1.1.6 Remark. For arbitrary, fixed points x,d ∈ Rn and an arbitrary, fixed homogeneous
polynomial p ∈ R[X] of degree m ∈ N0, the polynomial p(x + Td) ∈ R[T ] is a univariate
polynomial of degree m′ ≤ m (the zero polynomial is possible).

We can factorise it in the polynomial ring C[T ] in such a way that all factors are linear, i.e.

p(x + Td) = c
m′∏
k=1

(T − rk),
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where r1, . . . , rm′ (with multiplicity) are the roots of p(x + Td) in C (not necessary real) and
c ∈ R is the leading coefficient of p(x + Td). The zeros r1, . . . , rm′ and the coefficient depend
on the direction d and the choice of the point x. The dependency of the roots, we will study
more in detail later on in this section (see Proposition 1.1.12).

Now, we want to determine the leading coefficient c more precisely. In order to do this,
we assume m′ = m and write the homogeneous polynomial p as an R-linear combination of
monomials of degree m:

p =
∑
α∈Nn0 ,
|α|=m

cαXα,

where all coefficients cα ∈ R are real. Evaluating our polynomial at x + Td ∈ (R[T ])n shows

p(x + Td) =
∑
|α|=m

cα(x + Td)α.

This is a polynomial in R[T ] of degree m with leading coefficient

c =
∑
|α|=m

cαdα = p(d).

Hence from now on we write the factorisation of p(x + Td) in the following form

p(x + Td) = p(d)
m∏
k=1

(T − rk).

If p is hyperbolic, all of the zeros mentioned above are real, and m = m′ is fulfilled (see proof of
the next proposition), so we have the factorisation as above.

1.1.7 Proposition. Let p ∈ R[X] be a homogeneous polynomial with deg p = m ∈ N0 and
d ∈ Rn any direction. The following characterisations are equivalent:

(i) p is hyperbolic in direction d

(ii) p(d) 6= 0 and for every x ∈ Rn the univariate polynomial p(x + Td) has only real roots

(iii) p(d) 6= 0 and for every x ∈ Rn there are m real roots r1, . . . , rm (with multiplicity) of

p(x + Td) in the factorisation p(x + Td) = p(d)
m∏
k=1

(T − rk).

Proof. “(i) ⇒ (ii)”: Let p be hyperbolic in direction d. Since p(x + Td) has exactly m real
roots for all x ∈ Rn, it is not possible that p(d) = 0. If p(d) was zero, p(Td) = Tmp(d) would
be the zero polynomial. Hence for x = (0, . . . , 0) ∈ Rn, p(x+Td) = p(Td) would have infinitely
many roots. This is a contradiction, such that we get p(d) 6= 0.

For every x ∈ Rn the univariate polynomial p(x + Td) has degree m (see Remark 1.1.6). As
a univariate polynomial of degree m, p(x + Td) has at most m different roots (in C). By the
assumption (i), there are exactly m real ones, which means p(x + Td) has only real roots.
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“(ii) ⇒ (i)”: Since p(d) 6= 0, the leading coefficient does not vanish (1.1.6). Hence the

univariate polynomial p(x + Td) = p(d)
m∏
k=1

(T − rk) cannot be the zero-polynomial in R[T ].

Therefore p(x + Td) is a polynomial of degree m with exactly m roots in C. All roots are real
by assumption (ii), so we have exactly m real roots.

The equivalence “(ii)⇔ (iii)” is trivial.

1.1.8 Remark. It is also possible to define in a more general way whether a polynomial is
hyperbolic in any direction d ∈ Rn. For example it is possible to define for an arbitrary (not
necessary homogeneous) polynomial p ∈ C[X1, . . . , Xn] if it is hyperbolic. For more details have
a look at [Gül97, Definition 2.1].

That we only consider polynomials with real coefficients is up to the fact that for any hyper-
bolic polynomial p ∈ C[X1, . . . Xn] (defined analogously as in Definition 1.1.5 with C[X1, . . . Xn]
instead of R[X1, . . . , Xn]) the polynomial p

p(d) is a polynomial with real coefficients, since Propo-

sition 1.1.7 holds equally and all roots rk are real (look at the factorisation in 1.1.7 (iii)).
That we only consider homogeneous polynomials is because we are mainly interested in the

hyperbolicity cones (introduced in the next section 1.2) and they depend only on the homoge-
neous part of highest degree of the polynomial. For more details considering this more general
definition, see [Gül97, Definition 2.2].

1.1.9 Example. [G̊ar59, p.3, Ex.1-4].

(1) One important example of a hyperbolic polynomial is p1 :=
n∏
k=1

Xk ∈ R[X] which we are

going to use later on. It is homogeneous of degree m = n and it is hyperbolic in direction
d = (1, . . . , 1) ∈ Rn, because p1(d) = 1 6= 0 and for every x ∈ Rn the zeros of the
univariate polynomial

p1(x + Td) =

n∏
k=1

(T + xk)

are exactly all −x1, . . . ,−xm. Since x was chosen as a real vector, all zeros are real. Hence
the polynomial is hyperbolic in direction d = (1, . . . , 1) (see Proposition 1.1.7 (ii)).

Moreover, the polynomial p1 is hyperbolic in any direction d ∈ Rn with p1(d) 6= 0. To see
this we use again (ii) of Proposition 1.1.7. For x ∈ Rn the univariate polynomial

p1(x + Td) =

n∏
k=1

(xk + Tdk)

has the roots −xk
dk

for every k ∈ [n] which are well-defined since p1(d) 6= 0 and therefore
all entries of the vector d do not vanish. Furthermore, the roots −xk

dk
are real because x

and d are real vectors.

(2) The polynomial p2 := X2
1 −

n∑
k=2

X2
k is hyperbolic in direction d = (1, 0, . . . , 0). In this case,

we have a homogeneous polynomial of degree m = 2. Obviously p2(d) = 1 6= 0 and

p2(x + Td) = (x1 + T )2 −
n∑
k=2

x2
k
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has the two roots

t1 = −x1 +

√√√√ n∑
k=2

x2
k ∈ R and t2 = −x1 −

√√√√ n∑
k=2

x2
k ∈ R.

Since both of them are real, p2 is hyperbolic in direction d.

(3) Another important example is the determinant of symmetric matrices. A symmetric k×k-

matrix is determined by the upper triangular matrix, which consists of n := k(k+1)
2 entries.

Let

φ : Symk(R[X]) → (R[X])n = (R[X])
k(k+1)

2

be an isomorphism between the symmetric k × k matrices and the vector space (R[X])n.

We consider the determinant of a symmetric matrix as a polynomial in those n = k(k+1)
2

entries, which are our n variables X1, . . . , Xn. For the n-tuple X = (X1, . . . , Xn), we define
X := φ−1(X) ∈ Symk(R[X]) as the corresponding symmetric matrix. The determinant
polynomial p3 := det(φ−1(X)) = detX ∈ R[X] is hyperbolic in direction d = φ(Ik), where
Ik is the k × k unit matrix. The reason for the hyperbolicity is that the zeros of the
polynomial

p3(x + Td) = det(φ−1(x) + Tφ−1(d)) = det(φ−1(x) + TIk)

for any x ∈ Rn are up to sign the eigenvalues of the symmetric matrix φ−1(x), which are
real because of the symmetry.

The determinant-polynomial has degree m = k. To verify this have a look at the Leibniz-
formula for determinants.

(4) An easy example of a hyperbolic polynomial is a constant polynomial p4 = a ∈ R×. This
polynomial has degree m = 0 and no real roots but p(d) 6= 0 for every d ∈ Rn.

As we have seen in example (3), for the determinant polynomial p3 the roots of p3(x +Td) for
any vector x ∈ Rn are minus the eigenvalues of the corresponding matrix φ−1(x). From linear
algebra the term characteristic polynomial for a matrix A ∈ Mk(R) is known as the polynomial
PA = det(TIk − A) ∈ R[T ] and the roots of this polynomial are the eigenvalues of A. We want
to generalise this terminology to hyperbolic polynomials in the following definition.

1.1.10 Definition. Let p be hyperbolic in direction d ∈ Rn with deg(p) = m. Let x be an
arbitrary point in Rn. The characteristic polynomial of x with respect to p in direction d is
said to be p(Td − x) and the roots of the characteristic polynomial p(Td − x) are called the
eigenvalues of x with respect to p in direction d. There are m of those roots counted with
multiplicity for every direction d ∈ Rn in which p is hyperbolic and every point x ∈ Rn, denoted
by λ1(d,x), . . . , λm(d,x).

Since p(Td−x) = p((−x)+Td) has only real roots for a hyperbolic polynomial p, all eigenvalues
λ1(d,x), . . . , λm(d,x) are real.

1.1.11 Proposition. Let p ∈ R[X] be a polynomial, hyperbolic in direction d, and let x be
a vector in Rn. The eigenvalues of x with respect to p in direction d are minus the roots of
p(x + Td).
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Proof. Similar to 1.1.6 one can show that

p(Td− x) = p(d)
m∏
k=1

(T − λk(d,x)).

On the other hand

p(Td− x) = (−1)mp(x + (−T )d) = (−1)mp(d)
m∏
k=1

(−T − rk) = p(d)
m∏
k=1

(T + rk).

Hence the eigenvalues λk(d,x) = −rl are minus the zeros of p(x + Td) for any l, k ∈ [m].

So from now on, we consider the eigenvalues instead of the roots of hyperbolic polynomials
and always write the factorisation as

p(x + Td) = p(d)
m∏
k=1

(T + λk(d,x))

for a polynomial p of degree m, which is hyperbolic in direction d and for every x ∈ Rn.
Furthermore, evaluating p(x + Td) at the point 0 shows

p(x + Td)|T=0 = p(x) = p(d)

m∏
k=1

λk(d,x) (1.1)

for every x ∈ Rn. The notation f |T=0 for a polynomial f in the variable T means that we
evaluate the polynomial f at the point 0.

The eigenvalues have some special properties as a function of the direction d and the vector
x.

1.1.12 Proposition. [Ren06, p.2] and [G̊ar59, p.2]. The eigenvalues of a hyperbolic polynomial
p of degree m for any direction d ∈ Rn and any x ∈ Rn as defined in the previous definition are
real, so we can order them. We assume λ1(d,x) ≤ . . . ≤ λm(d, x). Furthermore, they fulfil the
following equation

∀s, t ∈ R : λk(d, tx + sd) =

{
tλk(d,x) + s, if t ≥ 0;

tλm−k+1(d,x) + s, if t < 0
(1.2)

for every k ∈ [m]. If p is hyperbolic in direction d, it is also hyperbolic in direction td for any
t ∈ R×. More generally, the following connection between the eigenvalues in direction d and td
holds

∀t ∈ R× : λk(td,x) =

{
1
tλk(d,x), if t ≥ 0;
1
tλm−k+1(d,x) if t < 0

(1.3)

for all k ∈ [m].
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Proof. As a first step, we show that the eigenvalues fulfil

∀k ∈ [m] : ∀t ∈ R : λk(d, tx) =

{
t · λk(d,x), if t ≥ 0;

t · λm−k+1(d,x), if t < 0.
(1.4)

Therefore, we consider the factorisation of the polynomial p(x +Td). Let us first have a look at
the case t = 0. In this case the right-hand side of the equation (1.4) is obviously zero for every
k ∈ [m] and for the polynomial p(tx + Td) = p(0 + Td) we get:

p(0 + Td) = Tmp(d) = p(d)
m∏
k=1

T.

This means that all eigenvalues λk(d, 0 · x) = λk(d,0) are zero. Hence the equation (1.4) is
fulfilled.

In a second case, we assume t 6= 0 to get

p(d)
m∏
k=1

(T + λk(d, tx)) = p(tx + Td)

t6=0
= p

(
t

(
x +

T

t
d

))
= tm · p

(
x +

T

t
d

)
= tm · p(d)

m∏
k=1

(
T

t
+ λk(d,x)

)

= p(d)
m∏
k=1

(T + tλk(d,x)) .

So we get λk(d, tx) = t ·λl(d,x) for some k, l ∈ [m]. Since we ordered the eigenvalues ascending
such that λ1(d,x) ≤ λ2(d,x) ≤ . . . ≤ λm(d,x) and this inequalities are stable under multipli-
cation with a real number t > 0 and get reversed by multiplication with a real number t < 0,
we get

λk(d, tx) =

{
t · λk(d,x), if t ≥ 0;

t · λm−k+1(d,x), if t < 0.

To show the first equation (1.2) of the proposition, assume s, t are arbitrary real numbers. As
we have seen, we can factorise the polynomial in the following way

p ((tx + sd) + Td) = p(d)
m∏
k=1

(T + λk(d, tx + sd)) ,
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since tx + sd is a vector in Rn. On the other hand, it is possible to rewrite it as follows:

p ((tx + sd) + Td) = p (tx + (T + s)d)

= p(d)

m∏
k=1

((T + s) + λk(d, tx))

(1.4)
= p(d)

m∏
k=1

(T + (s+ tλk(d,x))) .

In the last step, we used the homogeneity of the eigenvalues in the second argument (see equation
(1.4)). Analogue to the previous part using the ordering of the eigenvalues, we get the first part
of the claim. For the second statement (1.3), we look at the equation

p(td)

m∏
k=1

(T + λk(td,x)) = p (x + T (td))

= p (x + (Tt)d)

= p(d)

m∏
k=1

(Tt+ λk(d,x))

= tm · p(d)

m∏
k=1

(
T +

1

t
λk(d,x)

)

= p(td)

m∏
k=1

(
T +

1

t
λk(d,x)

)
.

By this equality, we get analogously to the previous part the claimed statement.

1.2 Hyperbolicity cones

The theory of hyperbolicity cones is used for hyperbolic programs, which extends the theory of
semi-definite programming (SDP). This, we are going to see in Example 1.2.9. The main result
of this section is that all hyperbolicity cones are convex cones.

We already mentioned that the eigenvalues λ1(d,x), . . . , λm(d,x) of a hyperbolic polynomial
p are continuous in x and in d each as a function from Rn to R (see 1.1.3 and 1.1.11). So we
want to define a set in Rn which is a cone and in which all eigenvalues have the same sign. This
set, we are going to call the hyperbolicity cone.

1.2.1 Definition. [Ren06, p.2]. Let p be a polynomial, hyperbolic in direction d ∈ Rn. The set

Λ(p,d) := {x ∈ Rn : ∀k ∈ [m] : λk(d,x) > 0}

is called the open hyperbolicity cone of p in direction d. If for x ∈ Rn the smallest eigenvalue of
p is denoted by λ1(d,x) the open hyperbolicity cone is Λ(p,d) = {x ∈ Rn : λ1(d,x) > 0}.
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1.2.2 Remark. The open hyperbolicity cone as defined above is an open set in Rn. To show
this, consider the eigenvalues for a fixed d ∈ Rn as a function from Rn to R in the second
argument. The hyperbolicity cone is then

Λ(p,d) =
m⋂
k=1

λ−1
k (d, (0,∞)).

Since the eigenvalues are continuous (see 1.1.3 and 1.1.11) and the pre-image of an open set is
open, the open hyperbolicity cone is open.

1.2.3 Remark. Since p is hyperbolic in direction d, the point d itself is an element of the open
hyperbolicity cone Λ(p,d) of p in direction d. Since p is homogeneous of degree m we get

p(d + Td) = p ((1 + T )d) = p(d)(T + 1)m.

Hence λk(d,d) = 1 > 0 for every k ∈ [m], especially for k = 1.

1.2.4 Proposition. [Ren06, p.2]. For every in direction d hyperbolic polynomial p, the open
hyperbolicity cone Λ(p,d) is an open cone, i.e. it is closed under multiplication with positive
scalars.

Proof. Let us start with an element x ∈ Λ(p,d) of the open hyperbolicity cone. By application of
Proposition 1.1.12, we get λ1(d, tx) = tλ1(d,x), which is positive for any t > 0 since λ1(d,x) > 0
by the assumption x ∈ Λ(p,d).

In this section, we want to show that Λ(p,d) is not only an open cone but also convex.
Afterwards, we will study the closure of the open convex cone to work with it later on in chapter
four. To prove the convexity of the open hyperbolicity cone, we first study different presentations
of the cone. In order to do so, we use some continuity arguments.

1.2.5 Proposition. [Ren06, Proposition 1]. The open hyperbolicity cone of a hyperbolic poly-
nomial p in direction d is the connected component of {x ∈ Rn : p(x) 6= 0} containing d.

Proof. Let S denote the connected component of {x ∈ Rn : p(x) 6= 0} containing the point d.

First, we want to show the part S ⊆ Λ(p,d). Since Λ(p,d) is open in Rn (1.2.2), the intersection

Λ(p,d)∩S is open in S. Furthermore, {x ∈ Rn : ∃k ∈ [m] : λk(d,x) < 0} =
m⋃
k=1

λk(d, (−∞, 0))

is open, too. The set S satisfies

S = ({x ∈ Rn : ∃k ∈ [m] : λk(d,x) < 0} ∩ S) ∪̇(Λ(p,d) ∩ S)

But S is connected, so one of the both unified sets must be the empty-set. By the definition
of S, we know d ∈ S and d ∈ Λ(p,d) (see 1.2.3) implies that Λ(p,d) ∩ S = S. This shows
S ⊆ Λ(p,d).

To show the equality of the two cones, we only need to prove that Λ(p,d) is connected because
Λ(p,d) ⊆ {x ∈ Rn : p(x) 6= 0}. To show the connectivity, it is sufficient to prove that for an
arbitrary x ∈ Rn there is always a path from x to d in Λ(p,d). We are going to show that the
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line segment l := {td + (1 − t)x : t ∈ [0, 1]} is completely contained in the open cone Λ(p,d).
This follows from the properties of the eigenvalues (see Proposition 1.1.12):

λk(d, td + (1− t)x) = t · λk(d,x)︸ ︷︷ ︸
>0, since x∈Λ(p,d)

+(1− t) > 0,

for all t ∈ [0, 1] and k ∈ [m]. Hence l ⊆ Λ(p,d) and the open hyperbolicity cone Λ(p,d) is
connected.

1.2.6 Remark. We showed that the hyperbolicity cone of an in direction d hyperbolic polyno-
mial p is star shaped with respect to d.

1.2.7 Corollary. Let p be a hyperbolic polynomial with respect to d and x ∈ Λ(p,d). Then the
line l := {td + (1− t)x : t ∈ [0, 1]} is contained in the hyperbolicity cone Λ(p,d).

Proof. See the last part of the previous proof.

Now, we introduced the elementary definitions for the theory of hyperbolicity cones. The aim
of this section, is to show that all hyperbolicity cones are convex. Furthermore, we want to study
the hyperbolicity cones of elementary symmetric polynomials in this thesis. The overall aim is
to show that these cones are spectrahedral. For this, we need to define what a spectrahedral
cone is.

1.2.8 Definition. A spectrahedral cone in Rn is a cone of the form{
x ∈ Rn :

n∑
i=1

xiAi � 0

}

for symmetric matrices A1, . . . , An ∈ Symk(R) for a k ∈ N such that there exists a vector y ∈ Rn

with
n∑
i=1

yiAi � 0.

The existence of the vector y with
n∑
i=1

yiAi � 0 ensures that the interior of the cone is non-

empty.

Let us now consider some examples of hyperbolicity cones. For this, we use the hyperbolic
polynomials mentioned in Example 1.1.9 and study their cones.

1.2.9 Example.

(1) For the polynomial p1 =
n∏
k=1

Xk the hyperbolicity cone Λ(p1,d) is the positive orthant if

and only if all entries of d are positive, for instance if d = (1, . . . , 1) ∈ Rn. For an arbitrary
d ∈ (R×)n the hyperbolicity cone of p1 is the orthant in which the direction d is included.
In the case n = 2, there are four quadrants and the same number of possible hyperbolicity
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cones depending on the direction d.

Figure 1.1: Hyperbolicity cones of p1 = X1X2 depending on the direction d. If d1 ∈ R2
+

the hyperbolicity cone is the first quadrant (green), d2 ∈ R− × R+: second
quadrant (yellow), d3 ∈ R2

− the third quadrant (blue) and d4 ∈ R+ × R−
fourth quadrant (red). With R+ := {x ∈ R : x > 0} and R− := {x ∈ R : x <
0}.

In this special case of hyperbolic polynomials, we are in the case of linear programming
(LP) since the hyperbolicity cone is a polyhedron, which is the type of cone we need as
constraint set for a LP. As a reminder, a cone is called polyhedron if and only if there is
a presentation as an intersection of finitely many half-spaces.

More generally, a homogeneous polynomial p =
m∏
k=1

lk which consists only out of linear

factors l1, . . . , lm ∈ R[X] is hyperbolic and its hyperbolicity cones is a polyhedra. The
reason for p being hyperbolic is that for all x ∈ Rn and any direction d ∈ Rn with
lk(d) 6= 0 for all k ∈ [m]:

p(x + Td) =

m∏
k=1

lk(x + Td) =

m∏
k=1

(lk(x) + T lk(d)) .

The zeros of this univariate polynomial are − lk(x)
lk(d) which are real numbers because x,d ∈

Rn and lk ∈ R[X] for all k ∈ [m].

(2) The hyperbolicity cone of the polynomial p2 = X2
1 −

n∑
k=2

X2
k is the forward light cone. For

n = 2, we get the following cone:
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Figure 1.2: The hyperbolicity cone Λ(p2,d) for p2 = X2
1 − X2

2 and d = (1, 0) in two
dimensions.

For n = 3 it is:

Figure 1.3: Hyperbolicity cone Λ(p2,d) in three dimensions with d = (1, 0, 0).

(3) Now, we consider again p3 = detX for any matrix X = φ−1(X) and study the correspond-
ing hyperbolicity cone of this polynomial in direction d = φ−1(Ik). For the notation used
here, see 1.1.9 (3). It is defined as

Λ(p3,d) = {x ∈ Rn : ∀k ∈ [m] : λk(d,x) > 0}

and the eigenvalues of p3 (see Definition 1.1.10) are exactly the eigenvalues of the matrix
X. So this cone is the set of positive definite matrices. The closure is then the cone of
positive semi-definite matrices which is spectrahedral. It is clear that every symmetric
matrix whose entries are either homogeneous polynomials of degree one or vanish has a

presentation
n∑
i=1

XiAi with symmetric matrices A1, . . . , An and so the hyperbolicity cone

of the determinant of this matrix is spectrahedral. Since all spectrahedral cones are deter-
mined by such a matrix polynomial, every spectrahedral cone is a hyperbolicity cone. This
we are going to show in the following Proposition 1.2.11. It is natural to ask whether the
other inclusion holds as well. 1958 Lax conjectured that all hyperbolicity cones of polyno-
mials in maximum three variables are spectrahedral. This conjecture is already proven see
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[LPR03] and [HV07]. The generalized Lax-Conjecture says that all hyperbolicity cones are
spectrahedral. Beside the work of Lewis, Parrilo and Ramana, it is also true for quadratic
polynomials [NS12]. But in general, there are only a few evidence in favour of this con-
jecture. Zinchenko showed in [Zin08] that all hyperbolicity cones of elementary symmetric
polynomials are spectrahedral shadows. Brändén showed that those hyperbolicity cones
are already spectrahedral cones [Brä13]. This proof of Brändén is the aim of this thesis.

(4) The hyperbolicity cone of a constant polynomial p4 = a ∈ R× is

Λ(p4,d) = Rn.

Let us now define the closure of the open hyperbolicity cone.

1.2.10 Definition. The closure Λ(p,d) := Λ(p,d) of the open hyperbolicity cone Λ(p,d) is said
to be the (closed) hyperbolicity cone of p in direction d. If we just say, hyperbolicity cone of p
in direction d, we always speak of the closed hyperbolicity cone.

1.2.11 Proposition. [LPR03, Proposition 2]. All spectrahedral cones are (closed) hyperbolicity
cones.

Proof. Let

S =

{
x ∈ Rn :

n∑
i=1

xiAi � 0

}
be a spectrahedral cone with symmetric matrices A1, . . . , An ∈ Symk(R) for any k ∈ N and such

that there is a y ∈ Rn with
n∑
i=1

yiAi � 0. We claim that the polynomial p := det

(
n∑
i=1

XiAi

)
∈

R[X] is hyperbolic in direction y.

First note that p(y) > 0. Let A :=
n∑
i=1

yiAi be the symmetric, positive definite matrix and

A1/2 its square root. The matrix A1/2 is also symmetric and positive definite. For any vector
x ∈ Rn, we need to show that p(x + Ty) has only real zeros.

p(x + Ty) = det

(
n∑
i=1

(xi + Tyi)Ai

)

= det

(
A1/2A−1/2

(
n∑
i=1

xiAi

)
A−1/2A1/2 + TA

)

= det(A1/2) det

(
A−1/2

(
n∑
i=1

xiAi

)
A−1/2 + TIk

)
det(A1/2)

= det(A)︸ ︷︷ ︸
>0

det

(
A−1/2

(
n∑
i=1

xiAi

)
A−1/2 + TIk

)
.

This polynomial has only real roots because the matrix A−1/2

(
n∑
i=1

xiAi

)
A−1/2 is symmetric

and therefore it has only real eigenvalues. So p is hyperbolic in direction y.
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Furthermore, the eigenvalues of p coincide with the eigenvalues of the matrix

A−1/2

(
n∑
i=1

xiAi

)
A−1/2

and these eigenvalues are positive if and only if the eigenvalues of
n∑
i=1

xiAi are positive because

A1/2 is positive definite. This shows the equality of the cones.

1.2.12 Proposition. Let p be a polynomial in R[X] of degree m, which is hyperbolic in direction
d ∈ Rn. There are different presentations of the open hyperbolicity cone.

(i) Λ(p,d) = {x ∈ Rn : ∀k ∈ [m] : λk(d,x) > 0}.

(ii) Λ(p,d) is the connected component of {x ∈ Rn : p(x) 6= 0} containing d itself.

(iii) Λ(p,d) = {x ∈ Rn : ∀t ≥ 0 : p(x + td) 6= 0}.

Proof. (i) is by definition of the hyperbolicity cones 1.2.1, (ii) holds by Proposition 1.2.5.
The third presentation follows directly from the fact that all roots of the polynomial p(x+Td)

are (−1) times the eigenvalues.

In the next part, we figure out some properties of the open hyperbolicity cones.

1.2.13 Proposition. [G̊ar59, p.4]. Let p ∈ R[X] be polynomial of degree [m], hyperbolic in
direction d ∈ Rn.

(i) Λ(p,−d) = −Λ(p,d).

(ii) Λ(p,d) = tΛ(p,d) = Λ(p, td) for any t > 0.

Proof. Let us first proof the first equation (i) for the open hyperbolicity cones. We start with an
element x ∈ Λ(p,d) and need to show that −x ∈ Λ(p,−d). With other words, For all k ∈ [m]
we know λk(d,x) > 0 and want to prove that then λk(−d,−x) is positive, too. For this, we just
need to use the properties of the eigenvalues shown in Proposition 1.1.12. For k ∈ [m]

λk(−d,−x)
(1.3)
= −λm−k+1(d,−x)

(1.2)
= λk(d,x) > 0.

This shows the first inclusion. For the other inclusion, let x ∈ Λ(p,−d), i.e λk(−d,x) > 0 for
all k ∈ [m] and again with the properties of the eigenvalues, we get

λk(d,−x) = λk(−d,x) > 0.

Hence −x is in the open hyperbolicity cone Λ(p,d).
The second statement follows directly from the fact that the open hyperbolicity cones are

closed under multiplication with a positive number (see Proposition 1.2.4) and the property
1
tλ1(d,x) = λ1(td,x) for any t > 0 of the eigenvalues, shown in Proposition 1.1.12. With other
words, multiplication with a positive real number t > 0 does not change anything with the sign
of the eigenvalues.
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1.2.14 Theorem. [Ren06, Theorem 3]. Let p be hyperbolic in direction d. If e ∈ Λ(p,d), then
p is hyperbolic in direction e. Moreover Λ(p,d) = Λ(p, e).

Proof. Let e be a point of the open cone Λ(p,d). We want to show that p is hyperbolic in
direction e, which means by definition that the univariate polynomial p(x + Te) has only real
roots for all x ∈ Rn.From now on, fix an arbitrary point x ∈ Rn.

By the assumption e ∈ Λ(p,d), we get p(e) = p(d)
m∏
k=1

λk(d, e) 6= 0 (see (1.1)) and sgn(p(e)) =

sgn(p(d)). WLOG, we assume p(d) > 0 (otherwise consider −p), hence p(e) > 0, too. Now, we
use again an argument of continuity. Let i :=

√
−1 be the imaginary number. We are going to

show

∀α > 0 : ∀s ≥ 0 : ∀t ∈ C : p(αid + te + sx) = 0⇒ Im(t) < 0. (1.5)

Assume this statement is true (we are going to show this later on in this proof), i.e. all roots of
p(αid + Te + x) have negative imaginary part regardless the value of α. Now, we consider the
limit value of the roots for α going to 0. The roots of the polynomial vary continuously with α,
therefore all roots of p(x + Te) = lim

α→0
p(αid + Te + x) have non-positive imaginary part. The

univariate polynomial p(x + Te) has only real coefficients, which means that all non-real roots
of this polynomial appear in pairs of conjugates, i.e. if t is a root of the polynomial p(x + Te)
with Im(t) 6= 0, the complex conjugate t̄ of t is a root of p(x + Te) as well. As we have seen,
no roots of p(x + Te) have positive imaginary part, hence all roots must be real, which was the
statement we wanted to show.

It remains to show the statement of (1.5). In order to do this, we fix some arbitrary α > 0. In
the case s = 0, we get for any t ∈ C with p(αid + te) = 0:

0 = tmp

(
e +

αi

t
d

)
.

Since p is hyperbolic in direction d by assumption, and e ∈ Rn, any root αi
t has to be real. Let

us define y := αi
t ∈ R to be such a root. By Proposition 1.2.12 (iii) it follows that y < 0. Hence

t = αi
y ∈ iR with y < 0 and α > 0, which shows that Im(t) = α

y < 0. This is what we wanted to
show.

Now assume, there is a s > 0 such that there is a zero t of the polynomial p(αid + Te + sx)
with Im(t) ≥ 0. Since this roots are continuous in s, there would be a s′ ∈ (0, s) such that
p(αid + Te + s′x) has a real root t′. This means

p(αid + t′e + s′x) = 0,

which implies that αi is a root of the polynomial p(Td + (t′e + s′x)). Since p is hyperbolic in
direction d and t′e+s′x ∈ Rn, the univariate polynomial p(Td+ (t′e+s′x)) has only real roots.
This is a contradiction to αi being a root.

It remains to show the equality of the open hyperbolicity cones. This follows from the presen-
tation (ii) of the hyperbolicity cone in Proposition 1.2.12.

1.2.15 Corollary. [Ren06, Corollary 4]. For every e ∈ Λ(p,d), and for every point x ∈ Rn the
univariate polynomial p(x + Te) has only real roots.
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Now, we are able to show the main result of this section, which is that the hyperbolicity cones
are convex. We already showed that the hyperbolicity cone is star-shaped with respect to the
hyperbolic direction d. So it is sufficient to show that it is star shaped in every direction x for
a point x from the hyperbolicity cone.

1.2.16 Theorem. [Ren06, Theorem 2]. All open hyperbolicity cones are convex.

Proof. Let p ∈ R[X] be a polynomial, hyperbolic in direction d ∈ Rn. For x,y ∈ Λ(p,d) we
only need to show that x + y ∈ Λ(p,d) since we have already shown in Proposition 1.2.4 that
the open hyperbolicity cone is closed under multiplication with positive scalars. Since y is in
the open hyperbolicity cone, p is hyperbolic in direction y and Λ(p,d) = Λ(p,y) (see 1.2.14).
WLOG we assume that y = d. Corollary 1.2.7 implies that the line between x and d is in the
hyperbolicity cone included. Hence the cone in convex.

1.2.17 Corollary. Λ(p,d) is a convex cone.

1.3 Derivatives of hyperbolic polynomials

We are not only interested in the properties of hyperbolic polynomials and their eigenvalues,
but also how to get new hyperbolic polynomials out of the known ones, i.e. how to construct
new hyperbolic polynomials. An obvious way is to multiply two hyperbolic polynomials. As a
corollary of this section, we will see that all elementary symmetric polynomials are hyperbolic
polynomials. We start with some easy examples and determine their hyperbolicity cones.

1.3.1 Lemma. [KPV15, Lemma 2.2]. Let p, q be two homogeneous polynomials in R[X] and
d ∈ Rn any direction. The product p·q is hyperbolic in direction d if and only if both polynomials
p and q are hyperbolic in direction d. In this case, Λ(p · q,d) = Λ(p,d) ∩ Λ(q,d).

Proof. Directly from the factorisation of p(x + Td) and q(x + Td) for all x ∈ Rn.

Furthermore, there is another possibility to construct some hyperbolic polynomials. For exam-
ple through derivation. For this reason, we need to introduce the formal directional derivation.

1.3.2 Definition. Let R be a commutative ring. For any polynomial p =
∑

α∈Nn0 ,
|α|≤m

cαXα ∈ R[X],

we define the (formal) partial derivative ∂
∂Xk

p with respect to the variable Xk for a k ∈ {1, . . . , n}
as

∂

∂Xk
p :=

∑
α−ek∈Nn0 ,
|α|≤m

αkcαXα−ek ,

where (ek)k∈[n] denote the standard basis vectors of Rn.
With the partial derivative, we are now able to define the (formal) directional derivative Dvp

of the polynomial p in direction v = (v1, . . . , vn) ∈ Rn.

Dvp =

n∑
k=1

vk
∂

∂Xk
p
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As usual, we define the k-th derivative D
(k)
v p recursive through D

(0)
v p := p and D

(k+1)
v p :=

Dv(D
(k)
v p) for all k ∈ N0.

1.3.3 Remark. For any univariate polynomial p ∈ R[T ] for any ring R, the derivative p′ denotes
the usual one dimensional (formal) derivative, which is the same as the directional derivative in
direction v = 1 ∈ R.

With this definition of the formal derivative, it is possible to prove some well-known theorems
from calculus as Rolle’s Theorem. For more details and the proof, see [Pri13, p.30].

1.3.4 Theorem (Rolle’s Theorem). Let F be any real closed field and p ∈ F [T ] any univariate
polynomial over F . For two successive zeros a, b ∈ F with a ≤ b of p there exists a point c in
the interval (a, b) such that p′(c) = 0.

Back to our construction of new hyperbolicity cones.

1.3.5 Proposition. Let p ∈ R[X] be hyperbolic in direction d ∈ Rn of degree m ∈ N. The
directional derivative Ddp is hyperbolic in the same direction as p itself. For the hyperbolicity
cones of p and Ddp, we get the inclusion Λ(p,d) ⊆ Λ(Ddp,d).

Proof. The proof of this proposition is an easy consequence from Rolle’s Theorem. Let p ∈ R[X]
be a polynomial, hyperbolic in direction d ∈ Rn such that it is homogeneous and p =

∑
α∈Nn0 ,
|α|=m

cαXα.

By the definition of hyperbolicity, this means that for every x ∈ Rn all roots of p(x + Td) are
real. Let x be an arbitrary point in Rn. We need to show, that (Ddp)(x + Td) has only real
zeros. By the definition of the formal derivative, it follows

(Ddp)(x + Td) =

(
n∑
k=1

dk
∂

∂Xk
p

)
(x + Td)

=

 n∑
k=1

dk
∑

α−ek∈Nn0 ,
|α|=m

αkcαXα−ek

 (x + Td)

=
n∑
k=1

dk
∑

α−ek∈Nn0 ,
|α|=m

αkcα(x + Td)α−ek

=
n∑
k=1

dk
∂

∂(xk + Tdk)
p(x + Td)

= (p(x + Td))′.

The last equality holds because of the product- and chain-rule for the one-dimensional formal
derivative. In the case m = 1 the derivative (p(x + Td))′ has degree m = 0, so it is hyperbolic
in direction d (see Example 1.1.9) and the set-inclusion of the hyperbolicity cones is trivial.

For m > 1, we are able to apply Rolle’s Theorem 1.3.4. This says that the roots of (p(x+Td))′

are those separating the ones of p(x +Td). So if α1 ≤ α2 ≤ . . . ≤ αm are the zeros of p(x +Td)
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(all real because p is hyperbolic in direction d), Rolle’s Theorem says there are m − 1 zeros
β1, . . . , βm−1 of (p(x + Td))′ such that β1 ≤ β2 ≤ . . . ≤ βm−1 and αj ≤ βj ≤ αj+1 for all
j ∈ [m− 1].

Figure 1.4: Roots of p(x + Td) and (p(x + Td))′.

So all m−1 zeros of (p(x + Td))′ are real. This argument also shows that Λ(p,d) ⊆ Λ(Ddp,d). If
we take a point x ∈ Λ(p,d), the eigenvalues λk(d,x) are positive. Hence the roots of p(x + Td)
are negative and so are the roots of (p(x + Td))′ as seen before. So the eigenvalues of x in
direction d with respect to Ddp are positive, which is the condition for x to be a point in
Λ(Ddp,d).

1.3.6 Proposition. [G̊ar59, p.3]. For any in direction d ∈ Rn hyperbolic polynomial p ∈ R[X]

of degree m, the polynomials pk ∈ R[X] (k = 1, . . . ,m) defined by p(X + Td) =
m∑
k=0

T (m−k)pk ∈

R[X1, . . . , Xn][T ] are hyperbolic in direction d.

Proof. First, we want to mention that the polynomials pk are well-defined since we consider
p(X + Td) as a univariate polynomial in R[X][T ] such that the coefficients pk ∈ R[X] of the
univariate polynomial in T are unique.

As we have seen in the proof of Proposition 1.3.5, it holds (p(x + Td))(k) = D
(k)
d p(x + Td) for

any x ∈ Rn and k ∈ N0. (We have seen this equation only for the case k = 1. The case k = 0
is trivial and the more general case for an arbitrary k ∈ N follows directly by induction). By

repeated application of Proposition 1.3.5, all derivatives D
(k)
d p , k ∈ N0, of p are hyperbolic in

direction d. Hence for any x ∈ Rn the univariate polynomial (p(x +Td))(k) has only real roots.
Moreover, the k-th derivative of p(X + Td) as a univariate polynomial in the variable T and
evaluated at the point 0 is

(p(X + Td))(k)
∣∣∣
T=0

= k!pm−k

Now assume, for one k ∈ [m]∪{0} the polynomial pm−k is not hyperbolic in direction d, hence
there is a point x ∈ Rn and a t0 ∈ C with Im(t0) 6= 0 such that pk(x + t0d) = 0. This implies

0 = k!pm−k(x + t0d) = (p(X + Td))(k)
∣∣∣
T=0

(x + t0d)

=
(

(D
(k)
d p)(X + Td)

)∣∣∣
T=0

(x + t0d)

= (D
(k)
d p)(x + t0d).

Hence D
(k)
d (x + Td) has a root t0 with Im(t0) 6= 0, which is a contradiction to the fact that

D
(k)
d p is hyperbolic in direction d.
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1.3.7 Definition. [Brä13, p.2 and p.4]. For S ⊆ [n], we define the k-th elementary symmetric
polynomial for k ∈ N0 in the |S| variables (Xj)j∈S as

σk(S) :=
∑
T⊆S
|T |=k

∏
j∈T

Xj ∈ R[X].

We write σk := σk([n]) for all k ∈ [n] ∪ {0}.

1.3.8 Remark. The k-th elementary symmetric polynomial σk is always a homogeneous polyno-
mial of degree k. We also defined elementary symmetric polynomial σ0. It is σ0 = 1.Furthermore,
σk(S) = 0 for any k > |S| and any S ⊆ [n].

1.3.9 Proposition. All elementary symmetric polynomials are hyperbolic in direction 1 =
(1, . . . , 1) ∈ Rn.

Proof. As we have seen in Example 1.1.9 (i), the polynomial p =
n∏
k=1

Xk is hyperbolic in any

direction d ∈ Rn with p(d) 6= 0. For this proposition we consider d = (1, . . . , 1) ∈ Rn. Now
consider the polynomial p(X + Td) ∈ R[X1, . . . , Xn][T ] as a univariate polynomial in the ring
R[T ] with the ring R := R[X]. The coefficients of this polynomial as a univariate polynomial
(elements of R = R[X]) are exactly the elementary symmetric polynomials σk ∈ R[X] (for all
k = 0, 1, . . . , n). Hence all elementary symmetric polynomials are hyperbolic by Proposition
1.3.6.



Chapter 2

Graphs and Digraphs

In this chapter, we shortly introduce graphs, the undirected version, and some important state-
ments about graphs, trees and especially spanning trees of graphs. Afterwards, we define the
directed version of graphs, called digraphs and considered as graphs with darts instead of just
(undirected) edges. The directed analogue of trees is called arborescences. Those arborescences
consist of a vertex called root such that all darts are diverging from this root.

2.1 Graphs

A graph consists of a finite set of vertices, mostly drawn as points, and a finite set of edges,
drawn as lines between the vertices. The definition which suits for our interests, is often called
multi-graph because it is possible to have several edges between any two vertices. Furthermore,
we do not allow loops, edges between a vertex and itself. The formal definition is:

2.1.1 Definition. A graph G = (VG, EG, εG) consists of two finite sets VG and EG, where VG is
the vertex-set and EG the edge-set of the graph G. Furthermore, there is a function

εG : EG → {{x, y} : x, y ∈ VG ∧ x 6= y},

which assigns to every edge e ∈ EG an unordered pair of vertices, the two to e incident vertices.
If there are edges e1, e2 ∈ EG such that εG(e1) = εG(e2), we say the graph contains a multi-edge
between the two incident vertices.

If not otherwise specified, EG and VG will always denote the set of edges and vertices of a
graph G. In this whole chapter, n ∈ N0 denotes always the number of vertices in a graph.

2.1.2 Example. Let us consider the graph G = (VG, EG, εG) on the vertices VG = {v1, . . . , v7}
and with edges E = {e1, . . . , e7}. If we draw a graph, we consider the vertices to be nodes,
and the edges lines or arcs between the two incident vertices given by the function εG. In this
example, the function ε is defined by

εG(e1) = εG(e2) = {v1, v2},
εG(e3) = {v2, v3},
εG(e4) = {v1, v4},
εG(e5) = {v3, v5},
εG(e6) = {v4, v5},
εG(e7) = {v4, v6}.

Figure 2.1: One possibility to draw the Graph G.



30 2 Graphs and Digraphs

There are a lot of possibilities to draw a graph. One possibility to draw the graph G as defined
above is shown in Figure 2.1.

2.1.3 Remark. A graph G has no multi-edges if and only if εG is injective. If εG is injective,
we say G is a simple graph.

We continue with some elementary definitions belonging to a graph.

2.1.4 Definition. Let G = (V,E, ε) be a graph.

(a) If there is an edge e ∈ E between two vertices v, w ∈ V , which means ε(e) = {v, w}, the
two vertices v and w are said to be neighbours.

(b) The degree of a vertex v ∈ V is the number of incident edges, denoted by deg(v) and
defined through deg(v) := |{w ∈ V : w is a neighbour of v}|.

(c) If deg(v) = 0 for any vertex v ∈ V , we say v is isolated and if deg(v) = 1, the vertex v is
called leaf.

2.1.5 Definition. Let G = (VG, EG, εG), H = (VH , EH , εH) be graphs. H is said to be a
subgraph of G, denoted by H ⊆ G, if VH ⊆ VG, EH ⊆ EG and εH = εG|EH .

Furthermore H is called a spanning subgraph of G if H is a subgraph of G such that VH = VG.

2.1.6 Remark. For every Graph G the empty graph (∅, ∅, ε) and G itself are subgraphs of G .

If we follow the edges of a drawn graph, it is possible to go from one vertex to another vertex
just using the edges appearing in the considered graph. More precisely, we define a path in a
graph as follows.

2.1.7 Definition. Let G = (V,E, ε) be a graph. A path P of length k ∈ N0 in the graph G
is a sequence v0, e1, v1, e2, v2, . . . , vk−1, ek, vk of pairwise distinct vertices v0, v1, . . . , vk ∈ V and
pairwise distinct edges e1, e2, . . . , ek ∈ E such that {vi−1, vi} = ε(ei) for all i ∈ [k].

A cycle C in a graph is similar to a path a sequence vk, e1, v1, e2, v2, . . . , vk−1, ek, vk of pairwise
distinct edges and pairwise distinct vertices of G such that {vi−1, vi} = ε(ei) for all i ∈ [k] and
v0 := vk.

2.1.8 Remark. Cycles and paths in a graph G could be considered as a subgraph of G itself.
Say v0, e1, v1, e2, v2, . . . , vk−1, ek, vk is a path or a cycle. Then the graph (V,E, ε) consisting of
the vertices V = {v0, v1, . . . , vk} and the edges E = {e1, e2, . . . , ek} and with the function ε of
incident vertices defined as ε := (εG)|E is a subgraph of G.

2.1.9 Example. In the graph shown in Figure 2.1, the neighbours of the vertex v4 are v1, v5, v6.
Hence the degree of v4 is deg(v4) = |{v1, v5, v6}| = 3. The vertex v6 is a leaf because it has only
one neighbour, namely v4. An example for an isolated vertex is v7 since there are no incident
edges to this vertex.

The sequence v6, e7, v4, e6, v5, e5, v3 is a path P in G in between the two vertices v6 to v3. A
cycle C is for example v1, e1, v2, e2, v1.
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Figure 2.2: A path P in the graph G (marked in blue) defined in Figure 2.1 and a cycle C
(marked in red).

2.1.10 Example (Special graphs). In this example we will mention some special graphs without
multi-edges, i.e. ε is injective.

(i) The Empty Graph En = (V,E, ε) on |V | = n vertices, is a graph without edges. Hence
E = ∅.

Figure 2.3: Empty graph E5 on the five vertices V = {v1, v2, v3, v4, v5}.

(ii) Pn = (V,E, ε) is the path on |V | = n vertices just consisting of a path from the first to
the last vertex. There are n − 1 edges, with ε(E) = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}}
assuming V = {v1, v2, . . . , vn}.

Figure 2.4: Path P5 on the five vertices V = {v1, v2, v3, v4, v5}.

(iii) The graph Cn is a cycle on the n vertices v1, . . . , vn with

εCn(ECn) = {{vi, vi+1} : i ∈ [n− 1]} ∪ {{vn, v1}} .

(iv) The Complete Graph Kn on n vertices consists of all possible edges between the vertices
(every pair of vertices of the graph is exactly once connected by a graph, no multiple
edges).
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Figure 2.5: Cycle C5 (left) and Complete Graph K5 (right), both on the five vertices V =
{v1, v2, v3, v4, v5}.

2.1.11 Definition. Two vertices v, w ∈ VG in a Graph G are said to be connected if there is
a path from v to w. A graph G itself is called connected if each pair of vertices of the graph
is connected. Otherwise, we call G disconnected. A connected component of a graph G is a
connected subgraph such that no other vertex of G is connected to one of the vertices of the
connected component.

Later on, we need the following notations.

2.1.12 Definition. For any Graph G = (V,E, ε) and an edge e ∈ E of G, we write

G− e := (V,E\{e}, ε|E\{e})

for the graph G without the edge e.

2.2 Trees

In this section, we consider a special type of graphs, called trees. There are multiple ways
to define a tree. We will use the following definition, but soon we will see some equivalent
conditions.

2.2.1 Definition. A tree is a connected graph without cycles.

2.2.2 Example.

Figure 2.6: Tree on ten vertices, with nine edges and six leafs (marked in red).

2.2.3 Remark. (a) The empty graph (∅, ∅, ε) is a tree.
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(b) A tree never contains multi-edges. Otherwise there would exist a cycle. So the function
εT is injective for any tree T . Hence we are in the case of a simple graph, defined in 2.1.3.

In the following proposition, we put down some characterisations of a tree, equivalent to the
definition above. There are even more equivalent statements, but these are sufficient for this
thesis.

2.2.4 Proposition. Let T = (V,E, ε) be a graph containing at least one vertex. The following
conditions are equivalent:

(i) T is a tree.

(ii) T is connected and |V | = |E|+ 1.

(iii) G contains no cycle and |V | = |E|+ 1.

(iv) Any two vertices in T are connected by a unique path in T .

(v) G is connected, but after removing an edge the graph is disconnected.

Proof. See [GY98, Theorem 3.1.11].

2.2.5 Definition. If H is a spanning subgraph of a graph G and H is a tree, we say it is a
spanning tree of G.

2.2.6 Proposition. A graph has a spanning tree if and only if the graph is connected.

Proof. See [Tut84, Theorem 1.36].

2.2.7 Proposition. Let G be a simple graph on n ≥ 2 vertices and with m ∈ N0 edges.

(a) If m < n− 1, G is disconnected.

(b) If m >
(
n−1

2

)
, G is connected ([GY98, Corollary 3.1.10]).

Proof. (a) If G was connected, G would contain a spanning tree T with n − 1 edges (2.2.6
and 2.2.4). Since the edges of the spanning tree are a subset of the edges of G, G would
contain at least n− 1 edges.

(b) We show the contraposition: If G is disconnected, the number of edges in G is smaller or
equal than

(
n−1

2

)
.

If G is disconnected, the graph has at least two connected components. The most edges
appear if there are only two connected components and each of them is a Complete Graph.
Say Kn1 and Kn2 for n1, n2 ∈ N are the two connected components of G with n = n1 +n2.
The number of edges in the Complete Graph Kni is

(
ni
2

)
for i = 1, 2. So number of edges

appearing in the graph G is (
n1

2

)
+

(
n2

2

)
.
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We want to show that the number of edges appearing is maximal if n1 = 1 (or analogue
n2 = 1). So we need to show that(

n1

2

)
+

(
n2

2

)
≤
(
n− 1

2

)
+

(
1

2

)
=

(
n− 1

2

)
.

This follows from

n1n2 − n1 − n2 + 1 = (n1 − 1)(n2 − 1) ≥ 0

⇔ 2n1n2 − 2n1 − 2n2 + 2 ≥ 0

⇔ n2
1 + 2n1n2 + n2

2 − 3n1 − 3n2 + 2 ≥ n2
1 − n1 + n2

2 − n2

⇔ (n− 1)(n− 2) ≥ n1(n1 − 1) + n2(n2 − 1)

A well known theorem is the formula of Cayley to count the number of spanning trees in the
Complete Graph on n vertices. There are multiple ways to prove this formula. A very common
one uses the Prüfer-sequence, which we do not introduce in this work. For the details of the
proof see [GY98, Theorem 4.4.4]. Later in this thesis, we will see another possibility to prove
this formula, using the Matrix-Tree Theorem.

2.2.8 Theorem (Cayley’s Formula). The Complete Graph Kn on n vertices has nn−2 spanning
trees.

2.2.9 Example. Using Cayley’s Formula, we are able to calculate the number of spanning trees
of the Complete Graph K4, which is 44−2 = 16. In the same way, we know that the number of
spanning trees of K3 is 33−2 = 3.
But it is not only possible to calculate the number of spanning trees of a Complete Graph but
we are also able to calculate the number of spanning trees of a graph consisting only of Complete
Graphs connected by a single edge such as the one in the following figure.

Figure 2.7: Graph G consisting of two Complete Graphs K3 and K4 as a subgraph connected
by a single edge e.

The number of spanning trees of the graph drawn in Figure 2.7 is 3 · 16 = 48 because any
spanning tree of this graph includes the edge e connecting both complete subgraphs K3 and K4.

2.3 Digraphs

Cayley’s Formula is very interesting, but we also want to count spanning trees of an arbitrary
graph, not only of the Complete Graph. This is the motivation behind the Matrix-Tree Theorem,
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which will be proved in the next chapter. To formulate and prove this theorem, we need to prove
this theorem first in the version for digraphs. In order to do this, we need the basic definitions
considering digraphs.

The term ‘digraph’ comes from the term ‘directed graph’ and is a shortcut for this. Still it is
very common in the literature to use this shortcut.

2.3.1 Definition. A digraph is a triple Γ = (VΓ, DΓ, oΓ) consisting of a finite vertex-set V ,
a finite dart-set D and an orientation function o : D → V × V which assigns to every dart
d ∈ D of the digraph Γ a tuple of two vertices, the first where the dart starts (the source-vertex)
and the second one determines the endpoint (the target-vertex). Hence, we can consider the
functions s : D → V and t : D → V assigning the source- and target-vertex to every dart. We
do not allow loops, so for every dart d ∈ DΓ the start and the end vertex must be distinct, i.e.
∀d ∈ DΓ : s(d) 6= t(d).

We say a digraph Γ contains a multi-dart if there are two different darts d1, d2 in Γ with the
same start and the same endvertex. So o(d1) = o(d2).

2.3.2 Remark. If not mentioned otherwise, VΓ, DΓ and oΓ denote the vertex-, dart-set and the
orientation function of a digraph Γ. The orientation function oΓ is injective if and only if the
digraph Γ does not contain any multi-darts.

A digraph is something similar to a graph. There is one important difference. The ‘edges’ of a
digraph have a direction and hence they are called darts.

2.3.3 Example. If we draw a digraph, we draw the element of the dart-set as darts. Each of
the darts is going from its start-vertex to its end-vertex. In the following figure, the digraph Γ1

is a digraph on the five vertices V1 = {v1, v2, v3, v4, v5}, and with six directed edges.

Figure 2.8: Digraph Γ1 on the five vertices V1 = {v1, v2, v3, v4, v5}.

The orientation of the dart d is o(d) = (v1, v2) since the dart goes from v1 to v2. Similar for the
other darts drawn in the figure.

2.3.4 Example. Another example for a digraph is the Complete Digraph on n vertices consisting
of all possible darts between the vertices without any multi-darts.
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Figure 2.9: Complete digraph on four vertices.

Similar to the degree of an (undirected) graph (Definition 2.1.4 (b)), we now want to define the
number of incoming darts and the number of outgoing darts:

2.3.5 Definition. Let Γ = (V,D, o) be a digraph. To every vertex v ∈ V , we define the
incoming degree as the number of darts in Γ with target-vertex v:

indeg(v) := indegΓ(v) := |{d ∈ D : t(d) = v}|.

Analogously, we define the outgoing degree as

outdeg(v) := outdegΓ(v) := |{d ∈ D : s(d) = v}|.

2.3.6 Remark. In a digraph Γ = (V,D, o), every dart has a start and an end-vertex such that
the sum over all incoming degrees and the sum over all outgoing degrees coincides with the
number of darts:

|D| =
∑
v∈V

indeg(v) =
∑
v∈V

outdeg(v).

2.3.7 Example. Consider again the digraph Γ1 drawn in Figure 2.8. The vertex v3 has incoming
and outgoing degree zero. For v4 the degrees are indeg(v4) = 1 and outdeg(v4) = 3.

2.3.8 Definition. A subdigraph ∆ = (V∆, D∆, o∆) of a digraph Γ = (VΓ, DΓ, oΓ) is a digraph
itself such that

V∆ ⊆ VΓ, D∆ ⊆ DΓ and o∆ = oΓ|D∆
.

The last part guarantees that the orientation of the directed edges in the subdigraph ∆ is the
same as in Γ.

2.3.9 Example.

Figure 2.10: Subdigraph ∆1 of the digraph Γ1 in Figure 2.8.
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For a graph, we defined a path to be a sequence of vertices and edges. We want to define
something similar for digraphs. As already mentioned, the main difference between graphs and
digraphs is the orientation of the edges. A path in a digraph can only use the edges in one
direction. So a path from vertex v to vertex w has a direction and is not reversible.

2.3.10 Definition. A (directed) path P in a digraph Γ = (V,D, o) of length k ∈ N0 is a
sequence v0, d1, v1, d2, v2, . . . , vk−1, dk, vk of pairwise distinct vertices v0, v1, . . . , vk ∈ V and darts
d1, . . . , dk ∈ D such that o(di) = (vi−1, vi) for all i ∈ [k].

A (directed) cycle C in a digraph Γ = (V,D, o) of length k ∈ N0 is a sequence of the
form vk, d1, v1, d2, v2, . . . , vk−1, dk, vk with pairwise distinct vertices v1, . . . , vk ∈ V and darts
d1, . . . , dk ∈ D such that o(di) = (vi−1, vi) for all i ∈ [k] and v0 := vk.

A tour T is a sequence v0, d1, v1, d2, v2, . . . , vk−1, dk, v0 of vertices v0, . . . , vk−1 and pairwise
distinct darts d1, . . . , dk such that the start- and end-vertex are the same and o(di) = (vi−1, vi)
for all i ∈ [k] and vk := v0.

2.3.11 Example.

Figure 2.11: On the left-hand side, we see a cycle C in a digraph Γ (blue) and in the middle a
path from v2 to v5 in Γ (green). On the right-hand side, there is a tour in red.

There are not only parallels between graphs and digraphs but it is also possible to construct a
digraphs out of a given graph and vice versa.

2.3.12 Construction. (a) Let Γ = (V,D, o) be a digraph. The underlying (undirected) graph
U(Γ) = (V,D, ε) is a graph with the same vertex-set V and the same edge-set D, but we
remove the ‘darts’ on the edges and get undirected edges. So if ϕ is the function

ϕ : V × V → {{x, y} : x, y ∈ V }, (x, y) 7→ {x, y} (2.1)

assigning to an ordered pair of vertices the set of both entries of the ordered pair, we require
ε to be ε = ϕ ◦ o.
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Figure 2.12: Underlying graph U(Γ1), for Γ1 see Figure 2.8.

(b) Conversely, there are multiple ways to construct a digraph out of a given graph G =
(V,E, ε). The first one coming into mind is to assign to every undirected edge e ∈ E an
arbitrary orientation. So for the resulting digraph Γ = (V,E, o), the orientation must fulfil
ϕ ◦ o = ε. This construction is not unique, so we may get different digraphs with this
version. Still the underlying graph U(Γ) is always G itself for every possible digraph Γ.

Figure 2.13: The leftmost graph is the undirected graph G. The other two graphs are two
different possibilities for the orientation of the edges of G to get a digraph. Still
these are not the only possibilities.

(c) Another way coming into mind to construct a digraph Γ = (V,D, o) from a given graph
G = (V,E, ε) is to double the number of darts compared to the number of edges in G by
setting D := {e+ : e ∈ E} ∪ {e− : e ∈ E}. The vertex-set stays the same as in the given
undirected graph. We define the orientation-function to be

o : D → V × V,
e+ 7→ (u, v),

e− 7→ (v, u) if ε(e) = {v, u}.

It does not matter which dart has which direction, so we do not care about this. This
digraph is called the equivalent digraph and is denoted by G̃ = Γ.
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Figure 2.14: A graph G (left) and its equivalent digraph G̃ (right).

This construction gives a unique digraph (up to the definition of e+ and e−). Only if there
are no edges in the graph G, the underlying graph of G̃ is the graph G itself.

For any graph, the digraph in (b) is always a subdigraph of the equivalent digraph.

2.4 Arborescences

In this section, we consider a directed analogue of trees. We want to define a digraph satisfying
the conditions of a tree (or at least some of them), see 2.2.4. As far as possible, it should be a
digraph without cycles and with one edge less than vertices such that the underlying graph is a
tree.

This condition is satisfied if we use the construction of 2.3.12 (b). The problem of this version
is, that in general there is no path with length longer than one.

Figure 2.15: Tree from Figure 2.6 with orientation such that there is no path longer than length
one.

If we want to have a path between any two vertices (see Proposition 2.2.4 (iv)), we need the
equivalent digraph. On the other hand, if we use the equivalent digraph of a tree, there is always
a directed cycle.
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Figure 2.16: Equivalent Digraph of the tree shown in Figure 2.6 containing a cycle (red).

So let us summarize the aims of the following definition. We would like to define a digraph
such that the underlying graph is a tree, but there should also be a possibility to go from one
vertex to another. This is in general not possible, so we decrease the requirements. Instead of
requesting a path between any two vertices, we only ask for a path from a fixed vertex r to any
other vertex in the graph. This path is then unique as well.

2.4.1 Construction. Consider an (undirected) tree T = (VT , ET , εT ). The function εT is
injective so we can neglect it. Let r ∈ VT be an arbitrary fixed vertex. For any edge e ∈ ET the
graph T −e (see Definition 2.1.12) consists of exactly two connected components (2.1.11), called
Re, Se where Re is the component with r ∈ Re.

Now, we want to construct a digraph (VT , ET , oT ) with orientation such that all darts are
orientated away from r . For this, we assign to every edge e of the tree T with εT (e) = {u, v}
the orientation oT (e) = (u, v) if u ∈ Re and v ∈ Se.

Figure 2.17: Tree with the two connected components Re and Se for the edge e and the resulting
orientation of the dart e.

Preceding like this for every edge e ∈ E, we receive a digraph.

2.4.2 Definition. A digraph A = (VA, DA, oA) is called an arborescence diverging from r ∈ VA
if there is a tree T = (VA, DA, εT ) such that oA(d) = (u, v) for every edge d ∈ DA with
εT (d) = {u, v} and u ∈ Rd, v ∈ Sd (Rd and Sd as defined above in the construction 2.4.1).

The vertex r ∈ VA is called the root of the arborescence.

2.4.3 Example. A possible arborescence diverging from r is:
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Figure 2.18: Arborescence diverging from a root r.

The root r plays an important role. Depending on the choice of r, the arborescence varies.

Figure 2.19: Two possible arborescences on the same underlying tree with different roots

2.4.4 Remark. Let us check if the requirements mentioned above are fulfilled by the definition
of an arborescence diverging from r. The underlying graph is obviously a tree because we just
assigned to every edge in a tree a direction. So there is no cycle and one dart less than vertices.
Furthermore, there are no multi-darts in an arborescence. Otherwise the underlying graph would
contain a cycle.

The construction of an arborescence guarantees that there is always a path from r to any other
vertex because all darts are oriented away from r.

2.4.5 Remark. It is also possible to define an arborescence converging to a fixed vertex r
instead of a diverging arborescence. But this is just the same digraph with all orientations
reversed.

2.4.6 Lemma. Let Γ be a digraph and r ∈ VΓ a vertex. The digraph Γ is an arborescence diverg-
ing from r if and only if Γ does not contain any cycle and indeg(r) = 0 as well as indeg(v) = 1
for every v ∈ VΓ\{r}.

Proof. ‘⇐:’ Let Γ = (V,D, o) be a digraph without cycles and with some vertex r ∈ V satisfying
indeg(r) = 0 and indeg(v) = 1 for all other vertices v ∈ V \{r}. The fact that Γ is without cycles
implies that the underlying graph U(Γ) is without cycles as well.
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Figure 2.20: Possible digraphs with a cycle as underlying graph.

A cycle in U(Γ) would imply that there is either a directed cycle in Γ or there is a vertex v ∈ V
with indeg(v) ≥ 2. In both cases we get a contradiction to the assumption.

Furthermore, the number of darts is

|D| 2.3.6
=
∑
v∈V

indeg(v) = indeg(r)︸ ︷︷ ︸
=0

+
∑

v∈V \{r}

indeg(v)︸ ︷︷ ︸
=1

= |V | − 1.

By Proposition 2.2.4 U(Γ) is a tree. It remains to show that the edges in Γ are orientated in
the correct way.

Consider the vertex r. Let N(v) denote the set of all neighbours of v for all v ∈ V in U(Γ).
Since indeg(r) = 0 all darts with r as a incident vertex must be orientated away from r to any
of its neighbours. So for all v ∈ N(r) the incoming degree is indeg(v) ≥ 1. By assumption it is
exactly the degree is exactly one. This means that there is no other dart with v as target-vertex
for all v ∈ N(r). For any v ∈ N(r) and any vertex w ∈ N(v)\N(r) the dart between v and w
has orientation (v, w). Proceeding like this, we see that all darts have the correct orientation.

‘⇒:’ Let Γ = (V,D, o) be an arborescence diverging from r ∈ V . Obviously, Γ does not
contain any (directed) cycle because a (directed) cycle would lead to an (undirected) cycle in
the underlying tree U(Γ).

Assume indeg(r) > 0. This means that there exists a dart d going from any vertex v 6= r to r.

Figure 2.21: Dart d going from Sd to Rd.

If we consider the corresponding edge in the underlying tree U(Γ) and look at the two connected
components Sd and Rd of U(Γ) − d, we see that the dart d goes from Sd to Rd. This does
not coincide with the construction of arborescences. Hence our assumption was wrong and
indeg(r) = 0.



2.4 Arborescences 43

It remains to show indeg(v) = 1 for all v ∈ V with v 6= r. Fix a vertex v ∈ V \{r}. Let
k := indeg(v) and d1, . . . , dk the incoming darts.

Figure 2.22: Vertex v with its four incoming darts d1, . . . , d4.

To every dj , j ∈ [k], let ej be the corresponding edge in the underlying tree U(Γ). For j ∈ [k],
let Tj be the connected components of U(Γ) − ej (see Definition 2.1.12) with v /∈ Tj . These
components are pairwise disjoint. Otherwise there would be a cycle (see Figure 2.23 the red line
together with the darts d2 and d3) in the tree U(Γ).

Figure 2.23: Vertex v with incident darts and the start-vertices ui to every incoming dart di and
the subtrees Ti.

For every incoming dart dj to the vertex v, the start-vertex u 6= v is in the subtree Tj . By
the construction of arborescence, we know by the orientation of the dart d that our root r is
in Tj aswell. Assume indeg(v) ≥ 2, then there are two darts di, dj with i, j ∈ [k] and i 6= j
such that the target-vertex v = t(di) = t(dj) is the same. The start-vertices are denoted
by ui = s(di), uj = s(dj). Since we started with an arborescence, there are no multi-darts (see
2.4.4), so ui 6= uj . As we have just seen this implies r ∈ Tj and r ∈ Ti, which is a contradiction to
the pairwise disjointness of the subtrees Tj and Ti. This gives us indeg(v) ≤ 1 for all v ∈ V \{r}.

If there was a vertex ṽ ∈ V \{r} with indeg(ṽ) = 0, we would get

|D| 2.3.6
=
∑
v∈V

indeg(v) = indeg(ṽ) + indeg(r)︸ ︷︷ ︸
=0

+
∑

v∈V {r,ṽ}

indeg(v)︸ ︷︷ ︸
≤1

≤ |V | − 2.
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This is a contradiction to the connectivity of the underlying tree U(Γ) by Proposition 2.2.7 (a).
Therefore every from r distinct vertex v has incoming degree 1.

Analogue to spanning trees (2.2.5), we define spanning arborescences.

2.4.7 Definition. A spanning arborescence A diverging from r of a digraph Γ is a subdigraph
of Γ which is an arborescence diverging from r such that VA = VΓ.

2.4.8 Proposition. Let G be a graph and r ∈ VG any vertex of G. There is a bijection between
the set of spanning trees of G and the set of spanning arborescences diverging from r of the
equivalent digraph G̃ of G.

Proof. Let T be a spanning tree of G . By construction 2.4.1 of an arborescence there is a unique
arborescence diverging from r. This is a spanning arborescence of the equivalent digraph.

For the other direction, we consider any spanning arborescence of the equivalent digraph
diverging from r. The underlying graph of the spanning arborescence is a tree using all vertices
of Γ and with that all vertices of G. Hence it is a spanning tree of G. Both are inverse to each
other.



Chapter 3

Matrix-Tree Theorem

The aim of this chapter is to formulate and prove the Matrix-Tree Theorem for weighted (undi-
rected) graphs. A special case of the Matrix-Tree Theorem was first proven by Rényi [CK78,
Introduction]. The basis for this was already created in the last chapter by introducing the nec-
essary terms in graph theory. It is hardly possible to find a direct proof of the undirected version.
So we need to prove the Matrix-Tree Theorem first for weighted digraphs and use this theorem
to easily conclude the version for undirected graphs. We use this theorem in chapter four in
order to go back to the topic of hyperbolic polynomials and their hyperbolicity cones and show
the main result of this thesis. Using the Matrix-Tree Theorem it is easy to calculate the number
of spanning trees of an arbitrary graph just by calculating a determinant of the Laplacian Matrix
(3.2.1). So Cayley’s Formula is a corollary of the Matrix-Tree Theorem (3.1.11). Similar this
works for digraphs such that we are able to calculate the number of spanning arborescences of
a given digraph. For the whole chapter, we fix an integer n ∈ N.

3.1 Matrix-Tree Theorem for digraphs

The Matrix-Tree Theorem is a statement about the connection of the spanning tree polynomial
and the determinant of a matrix. The rule is sometimes also called Maxwell’s or Kirchhoff’s
rule [CK78].

We are going to prove a version for weighted digraphs. So for a given digraph Γ = (V,D, o),
we assign a variable to every dart d ∈ D. It is also possible to work with dart-weights, which is
a function

ω :D → R [(Xd)d∈D] ,

d 7→ Xd.

3.1.1 Definition. For any digraph Γ = (V,D, o) with a fixed numeration of the vertices V =
{v1, . . . , vn}, we define the weighted Laplacian LΓ = (lij)1≤i,j≤n as the n× n-matrix defined as

lij :=


−

∑
d∈D,

o(d)=(vj ,vi)

Xd, if i 6= j;

∑
d∈D,
t(d)=vi

Xd, if i = j.

Remember that t(d) denotes the target-vertex of the dart d, 2.3.1. In the literature, this matrix
is sometimes also called Kirchhoff Matrix.
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3.1.2 Remark. Since we do not consider digraphs with loops (i.e. a dart with same start- and
end-vertex), the sum for the diagonal-entries lii for all i ∈ [n] goes over all darts d ∈ D with
t(d) = vi but s(d) 6= vi.

Although, we do not consider digraphs with loops, it would be possible. A loop would not
change the weighted Laplacian in case, we add s(d) 6= vi to the condition of the sum for the
diagonal entries.

A very important and obvious property of the weighted Laplacian is the vanishing row-sum.

3.1.3 Remark. The i-th row sum
∑
j∈[n]

lij vanishes because

∑
j=[n]

lij =
∑

j∈[n]\{i}

lij + lii

=
∑

j∈[n]\{i}

− ∑
d∈D

o(d)=(vj ,vi)

Xd

 +
∑
d∈D
t(d)=vi

Xd

= −
∑

j∈[n]\{i}

∑
d∈D

o(d)=(vj ,vi)

Xd +
∑

j∈[n]\{i}

∑
d∈D

o(d)=(vj ,vi)

Xd

= 0

for every i ∈ [n]. So the columns of LΓ are linear dependent and the determinant of the Laplacian
LΓ is zero if there is at least one vertex, too.

3.1.4 Example. Consider the digraph Γ on three vertices (see Figure 3.1)

Figure 3.1: Digraph Γ on the vertices V = {v1, v2, v3} with four darts.

The weighted Laplacian of the digraph Γ drawn in Figure 3.1 is

LΓ =

Xb +Xc −Xc −Xb

0 0 0
−Xa −Xd Xa +Xd

 . (3.1)

3.1.5 Definition.

(a) Let Γ be a digraph and r ∈ VΓ a fixed vertex. By AΓ,r, we denote the set of all spanning
arborescences of Γ diverging from r.
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(b) The spanning arborescence polynomial PΓ is defined as

PΓ :=
∑

A∈AΓ,r

∏
d∈DA

Xd.

3.1.6 Remark. For every arborescence A, there is only one spanning arborescence of A namely
A itself. So PA =

∏
d∈DA

Xd.

3.1.7 Definition. For n ∈ N, any matrix A ∈ Mn(R) over a commutative ring R, we denote
the (n− 1)× (n− 1) matrix obtained by deleting out the j-th column and j-th row of A as Aj
for any j ∈ [n].

For the Laplacian LΓ of a digraph Γ with enumerated vertices v1, . . . , vn and a fixed vertex
r ∈ VΓ, (LΓ)r describes the matrix LΓ with deleted j-th column and row if r = vj .

Now, we are able to formulate the main theorem of this section, the Matrix-Tree Theorem for
digraphs.

3.1.8 Theorem (Matrix-Tree Theorem for digraphs, 1st version). Let Γ = (V,D, o) be a digraph
with a vertex r. The following equality holds:

det(LΓ)r = PΓ =
∑

A∈AΓ,r

PA =
∑

A∈AΓ,r

∏
d∈DA

Xd. (3.2)

Before we prove the Matrix-Tree Theorem, we will look at some examples and prove a corollary.

3.1.9 Example. Let us consider the digraph drawn in Figure 3.1. For r = v3, we get with the
Matrix-Tree Theorem

PΓ = det(LΓ)r =

∣∣∣∣Xb +Xc −Xc

0 0

∣∣∣∣ = 0. (3.3)

This means, there are no spanning arborescences because the sum appearing in the spanning
tree polynomial must be empty. There is no other possibility for the sum to vanish. Considering
the graph, we can verify that there are no spanning arborescences of the graph Γ diverging from
v3.

On the other hand, considering the vertex v2 as root for the spanning arborescences (i.e.
r = v2), there are the following spanning arborescences.

Figure 3.2: The three spanning arborescences A1, A2, A3 of Γ (for Γ see Figure 3.1) diverging
from r = v2.
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The Matrix-Tree Theorem says that the spanning arborescence polynomial is given as

PΓ = det(LΓ)2 =

∣∣∣∣Xb +Xc −Xb

−Xa Xa +Xd

∣∣∣∣ = (Xb +Xc)(Xa +Xd)−XaXb

= XaXc +XcXd +XbXd.

It is not by chance that the number of summands of the determinant coincides with the number
of spanning trees. In the following corollary we will prove this.

Furthermore, from the spanning arborescence polynomial we can conclude to the spanning
arborescences of the considered graph. Every summand stands for one spanning arborescence.
The variables show which edges appear in the corresponding spanning tree.

3.1.10 Corollary. Let Γ = (V,D, o) be a digraph on n vertices v1, v2, . . . , vn. Furthermore, fix
a vertex r and denote by NΓ the number of spanning arborescences of Γ diverging from r. Then
NΓ = det(LΓ)r((1)d∈D). For the Complete Digraph Γ (all possible darts in the digraph without
multi-darts, see 2.3.4), we get NΓ = nn−2.

Proof. We evaluate the polynomial at 1 for every variable Xd with d ∈ D in the spanning tree

polynomial. We write 1 = (1)d∈D to make it easier to read. Then (PA)(1) =

( ∏
d∈DA

Xd

)
(1) = 1

for every arborescence A ∈ AΓ diverging from r, so

NΓ =
∑

A∈AΓ,r

1 = PΓ(1)
3.1.8

= det (LΓ)r (1).

The Complete Digraph Γ has the Laplacian

(LΓ)(1) =

n− 1 −1
. . .

−1 n− 1

 ∈ Mn(R)

evaluated at 1. The determinant of (LΓ)r(1) is the characteristic polynomial of the matrix
A ∈ Mn−1(R) with every entry aij = 1 for i, j ∈ [n−1], evaluated at n. So det(LΓ)r = nn−2.

3.1.11 Remark. This is another proof for Cayley’s Formula (see Theorem 2.2.8) using the
bijection between spanning trees of a graph and the spanning arborescences diverging from a
fixed vertex of the equivalent digraph 2.4.8.

If there is a vertex vi without (directed) path going from r to vi, then there is no spanning
arborescence, hence det(LΓ)r = 0.

Proof of the Matrix-Tree Theorem, [Tut84]. WLOG, we assume that r = vn. This is possible
because the determinant only changes the sign if we swap two rows or columns. We need to
swap two rows and two columns, so the sign stays the same.

First we study the case n = 1: The determinant of a matrix of size 0 × 0, is 1. On the other
hand the graph with only one vertex, has one spanning arborescence diverging from this vertex,
the graph itself, but the product is empty since there are no darts. So the right hand side of
equation (3.2) is 1, too. Hence the case n = 1 is shown.
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Now, let n > 1. The determinant of (LG)r = (lij)i,j∈[n−1] is easy to calculate with the Leibniz-
Formula:

det(LG)r =
∑

τ∈Sn−1

sgn(τ)
n−1∏
i=1

liτ(i).

We call the product pτ :=
n−1∏
i=1

liτ(i) the initial product of τ . We can split the initial product into

two products, pτ,1 and pτ,2, where pτ,1 is the product consisting of the fixpoints of τ and pτ,2 are
the remaining factors, so

pτ,1 =
∏
i=1,
τ(i)=i

lii and

pτ,2 =
∏
i=1,
τ(i)6=i

liτ(i).

If τ consists not only out of fixpoints, we can split the factors appearing in pτ,2 into cycles. This
means if τ = (a1 τ(a1) · · · τ l1−1(a1)) · · · (ak τ(ak) · · · τ lk−1(ak)), where l1, . . . , lk ∈ N are the
length of the cycles and k ∈ N the number of cycles. This leads to the product

k∏
i=1

li−1∏
j=0

lτ j(ai)τ j+1(ai)

 .

Let n0(τ) denote the number of even cycles in τ . Then sgn(τ) = (−1)n0(τ) for every τ ∈ Sn−1.
With the definition of (LΓ)r, we see that every pτ leads to one or more summands of the form∏
d∈D∆

Xd for a spanning subdigraph ∆. So it is possible to write

det(LΓ)r =
∑
∆

N(∆)
∏
d∈D∆

Xd, (3.4)

where the sum goes over all spanning subdigraphs ∆ of Γ and N(∆) ∈ Z for every spanning
subdigraph ∆. It remains to determine the integers N(∆).

If N(∆) 6= 0 for a spanning subdigraph ∆, the product
∏

d∈D∆

Xd appears in at least one in

pτ , τ ∈ Sn−1. Since the n-th row of LG is deleted in (LG)r, lni does not appear in any initial
product. Hence Xd with d = (vi, vn), i ∈ [n − 1] does not appear in any initial product pτ ,
τ ∈ Sn−1 and the incoming-degree indeg∆(vn) = 0 must vanish for all spanning subdigraphs ∆
with N(∆) 6= 0. Furthermore, for every i ∈ [n − 1] there is exactly one j ∈ [n − 1]\{i} such
that Xd with d = (vj , vi) appears in the initial product. To verify this, note that the diagonal
elements are constructed such that the row sum vanishes. This means in the i-th diagonal
element, Xd appears only if d is a dart ending in vi. So all subdigraphs ∆ with N(∆) 6= 0 have
indeg∆(vn) = 0 and indeg∆(vi) = 1 for all i ∈ [n− 1]. So we only consider those subdigraphs in
the sum in (3.4).
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Let pid be the initial product belonging to the permutation id ∈ Sn−1 with n− 1 fixpoints. So

pid =

n−1∏
i=1

lii =

n−1∏
i=1

−∑
j=1,
j 6=i

lij

 =

n−1∏
i=1

∑
j=1,
j 6=i

∑
d∈D

o(d)=(vj ,vi)

Xd.

For every spanning arborescence A ∈ AΓ,r the product
∏

d∈DA
Xd is a summand of pid and ev-

ery such summand belongs to an arborescence. This contribute ! to N(A) for every spanning
arborescence A ∈ AΓ,r.

Assume N(A) > 1 for a spanning arborescence A. Then the product comes also from another
initial product pτ , τ ∈ Sn−1\{id}. Then τ has at least one cycle of length > 1. This cycle
corresponds to a cycle in the spanning arborescence.

Figure 3.3: Cycles of a subdigraph belonging to the permutation τ = (1 2 4)(67).

This is a contradiction to the definition of a spanning arborescence. So N(A) = 1 for all
spanning arborescences A ∈ AΓ,r.

Now we need to study the spanning digraphs ∆ of Γ with indeg∆(vn) = 0, indeg∆(vi) = 1 for
all i ∈ [n− 1] but which are no spanning arborescences of Γ. Lemma 2.4.6 implies that ∆ must
contain a cycle. So the product

∏
d∈∆

Xd comes from pτ if and only if every cycle of τ corresponds

to a cycle in ∆. The cycles in ∆ are vertex disjoint. So assume in ∆, there are k > 0 distinct
tours (2.3.10) with disjoint vertex sets. Let T be the set of these k tours. So

∏
d∈D∆

Xd is in

the initial product pτ if and only if the cycles in τ are a subset of T . In particular, it is also
possible to have τ = id. Assume τ has j ∈ {0, . . . , k} cycles. Since the non-diagonal entries of
(LG)r have a negative sign, the initial product pτ contributes (−1)n0(τ)(−1)j−n0(τ) = (−1)j to
N(∆). The first part (−1)n0(τ) comes from the Leibniz-Formula and the second part from the
minus sign of the non-diagonal entries. There are

(
k
j

)
possibilities to choose exactly j of those k

cycles and there is always exactly one initial product corresponding to this. So

N(∆) =
k∑
j=0

(
k

j

)
(−1)j = (1− 1)k = 0.

So in equation (3.4), the only non-vanishing summands are the ones belonging to an arborescence
and in the case of an arborescence A the integer is N(A) = 1. So the statement is proven.
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3.2 Matrix-Tree Theorem for (undirected) graphs

In the last section, we proved the Matrix-Tree Theorem for digraphs. In this section, we are going
to formulate and prove the undirected version of the Matrix-Tree Theorem. This, undirected
version, is the statement we are going to use in the last chapter in order to prove the main result
of this thesis. Similar as in the directed case, we assign to each edge e ∈ E an edge variable Xe.

3.2.1 Definition. We define the weighted Laplacian LG = (lij)1≤i,j≤n for a graph G = (V,E, ε)
on the vertices v1, v2, . . . , vn by

lij =


−

∑
e∈E,

ε(e)={vi,vj}

Xe, if i 6= j;

∑
e∈E,
vi∈ε(e)

Xe, if i = j.
(3.5)

3.2.2 Remark. Of course, it is also possible to work with edge-weights instead of the assigned
edge-variables.

3.2.3 Proposition. Let G = (V,E, ε) be a graph with vertices v1, . . . , vn. The weighted Lapla-
cian is

LG =
∑
e∈E

Xe(eve − ewe)(eve − ewe)
T ,

where ε(e) = {ve, we} are the incident vertices. The vectors (ek)k∈[n] denote the standard-basis
vectors of Rn and for all e ∈ E and j ∈ [n] it is eve = ej if and only if ve = vj .

Proof. The matrix Ae := (eve − ewe)(eve − ewe)
T has two times an one as a diagonal entry and

all other diagonal entries are zero for all e ∈ E. If vi and vj , i, j ∈ [n] are the two incident
vertices to a fixed edge e, the matrix Ae = (alk)l,k∈[n] has aii = ajj = 1 and aij = aji = −1 and
all other entries are zero.

For every edge e ∈ E the edge-variable Xe counts one to the diagonal elements lii and ljj if
e is an edge going from vi to vj . So the diagonal elements ljj is the sum of all to vj incident
edges. This is also the case in the matrix

∑
e∈E

Xe(eve − ewe)(eve − ewe)
T . Furthermore, the

edge e with ε(e) = {vi, vj} contributes the summand −Xe to the matrix-entries lij and lji
for i 6= j. Since the ij-th entry of Ae is −1, the edge e contributes also −Xe in the matrix∑
e∈E

Xe(eve − ewe)(eve − ewe)
T to the ij-th and ji-th entry. So all entries of the two matrices

coincide.

3.2.4 Remark.

(a) Since the edges have no direction, the weighted Laplacian of a graph is symmetric.

(b) Analogue to the digraphs (see Remark 3.1.3), the row sum is zero and so the determinant
of the weighted Laplacian vanishes.
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3.2.5 Definition. Let TG be the set of all spanning trees of a graph G. The spanning tree
polynomial is defined as

TG :=
∑
T∈TG

∏
e∈ET

Xe.

3.2.6 Theorem (Matrix-Tree Theorem for graphs). Let G = (V,E, ε) be a graph on the vertices
v1, v2, . . . , vn (with a fixed numeration of the vertices), and one of the vertices is supposed to be
r. Then

det(LG)r = TG.

Proof. To the undirected graph G, we consider the equivalent digraph G̃ = (V,D, o), defined in
2.3.12. To every dart d ∈ D, d = e+ or d = e− for any edge e ∈ E, we assign the edge-variable
Xe.

Figure 3.4: On the left-hand side, we see a graph G with its equivalent digraph G̃ on the right-
hand side. In both, the graph and the digraph, the edges/ darts are labelled with
its edge-weights/ dart-weights.

The Laplacian of the equivalent digraph G̃ coincides with the Laplacian of the considered
graph G and so

det(LG)r = det(L
G̃

)r
3.1.8
=

∑
A∈AΓr

∏
d∈DA

Xd =
∑
T∈TG

∏
e∈ET

Xe,

for a fixed vertex r ∈ V . For the last equality, we used the bijection between spanning trees and
spanning arborescences diverging from r mentioned in Proposition 2.4.8. The product remains
the same for every spanning tree/ spanning arborescence because we use for any edge e the dart
e+ or e− and they have the same edge-weights.

3.2.7 Remark. The spanning-tree polynomials are independent of the chosen vertex r and so
the determinant is independent of the deleted row and column.

3.3 Hyperbolicity cones of graphs

Back to the theory of hyperbolicity cones. We are able to apply the Matrix-Tree Theorem
presented above (Theorem 3.2.6) to the hyperbolicity cones of some spanning tree polynomials
in order to see that the hyperbolicity cones are spectrahedral.
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3.3.1 Definition. The hyperbolicity cone of a connected graph G is the hyperbolicity cone of
the corresponding spanning tree polynomial TG.

In the case we consider a disconnected graph G, there are no spanning trees (see 2.2.6) such
that TG = 0 (in R[X]). This is a non-hyperbolic polynomial. In the connected case, we show:

3.3.2 Proposition. [Brä13, p.3]. The hyperbolicity cone of any connected graph is spectrahe-
dral.

Proof. We consider a connected graph G on n vertices and fix an arbitrary i ∈ [n]. In Proposition
3.2.3, we have seen that the Laplacian of G is

LG =
∑
e∈E

Xe(eve − ewe)(eve − ewe)
T .

The matrices Ae := (eve −ewe)(eve −ewe)
T for all e ∈ E are positive semi-definite and they stay

positive semi-definite after deleting the i-th row and the i-th column. So the sum over all those
matrices (Ae)i is positive semi-definite as well and is the same as det(LG)i(1), where 1 = (1)e∈E .
Together with the Matrix-Tree Theorem 3.2.6, we see this is equal to the number of spanning
trees of G. So det(LG)i(1) is a positive integer because G is connected and so there is at least
one spanning tree (2.2.6). This implies that (LG)i(1) is positive definite.

As we have already shown in the proof of Proposition 1.2.11 this implies that TG is hyperbolic
in direction 1 and

Λ(TG,1) = {x ∈ Rn : (LG)i(x) � 0} .





Chapter 4

Hyperbolicity Cones of Elementary
Symmetric Polynomials are Spectrahedral

In this chapter, we want to prove that hyperbolicity cones of elementary symmetric polynomials
are spectrahedral. This is the main theorem of this thesis. We present the proof of Brändén
[Brä13]. In the last section of chapter three, we have already seen that the hyperbolicity cone
of any connected graph is spectrahedral. So the idea of this proof is to construct a connected
graph such that the corresponding spanning tree polynomial contains an elementary symmetric
polynomial as a factor. To determine the spanning tree polynomial belonging to the graph, we
use the Matrix-Tree Theorem 3.2.6 presented in the last chapter. In this way, we want to define a
graph such that the hyperbolicity cone of the spanning tree polynomial is spectrahedral. This is
sufficient for the hyperbolicity cone of the elementary symmetric polynomial to be spectrahedral
if additionally a subset property of the hyperbolicity cones holds. This statement is verified by
the next theorem. For the whole chapter, we fix an integer n ∈ N.

4.0.1 Theorem. Let p ∈ R[X] = R[X1, . . . , Xn] be a homogeneous polynomial, hyperbolic in
direction d ∈ Rn. If there are finitely many symmetric matrices A1, . . . , An ∈ Symm(R), m ∈ N,

such that
n∑
i=1

diAi � 0 and if additionally there is a homogeneous polynomial q ∈ R[X] such that

(1) p · q = det

(
n∑
i=1

XiAi

)
and

(2) Λ(p,d) ⊆ Λ(q,d),

the hyperbolicity cone Λ(p,d) is spectrahedral.

Proof. Let A1, . . . , An be symmetric matrices and q a homogeneous polynomial as mentioned in
the assumptions of the theorem. We need to show that Λ(p,d) is spectrahedral. The polynomial
p · q is hyperbolic in direction d because of assumption (1). This we have already proven in the
proof of 1.2.11. Furthermore, Proposition 1.2.11 also shows that the hyperbolicity cone Λ(p·q,d)
is the spectrahedral cone {

x ∈ Rn :
n∑
i=1

xiAi � 0

}
.

With assumption (2) it follows

Λ(p · q,d)
1.3.1
= Λ(p,d) ∩ Λ(q,d)

(2)
= Λ(p,d).

This shows Λ(p,d) = Λ(p · q,d) is spectrahedral, too.
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4.0.2 Remark. In the theorem above, we did not assume that the polynomial q is hyperbolic
but only that it is homogeneous. The hyperbolicity follows directly out of Lemma 1.3.1 and
Proposition 1.2.11.

This theorem is the basic idea of the proof of Theorem 4.4.1. It is a sufficient condition
for a hyperbolicity cone to be spectrahedral and it is possible to apply this theorem to the
hyperbolicity cone of an elementary symmetric polynomial. We need a homogeneous polynomial,
such that one of its factors is an elementary symmetric polynomial and the polynomial itself
must have a determinant-presentation as in assumption (1) of Theorem 4.0.1. However, we
cannot forget about the other factors. The other factors need to fulfil the subset condition of
the corresponding hyperbolicity cones (see Theorem 4.0.1 (2)). With a closer look at condition
(1) and the Matrix-Tree Theorem 3.2.6, the crucial idea is given. The Laplacian of a graph has

the form
n∑
k=1

XkAk for certain matrices (see Proposition 3.2.3). Hence, we need a graph such

that the spanning tree polynomial contains an elementary symmetric polynomial as factor and
fulfils all other conditions of the theorem above.

4.1 Elementary symmetric polynomials

Before we start with the recursive construction of the graphs, we first need to show some technical
properties of the elementary symmetric polynomials. These properties are necessary for the
recursive construction and the computation of the spanning tree polynomial Hk,k. We start
with a recurrence relation of the elementary symmetric polynomials.

4.1.1 Lemma. Let S ⊆ [n] and k ∈ N. For any j ∈ S the following equation holds:

σk(S) = σk(S\{j}) +Xjσk−1(S\{j}).

Proof. By definition of the elementary symmetric polynomials (1.3.7), σk(S) consists of a sum
over all subsets of S with cardinality k. Now fix some j ∈ S. We divide the set of subsets of S
with cardinality k in those including j and those without j. Let S1 := {T ⊆ S : |T | = k ∧ j /∈ T}
and S2 := {T ⊆ S : |T | = k ∧ j ∈ T}. So for the elementary symmetric polynomial σk(S), we
get

σk(S) =
∑
T⊆S
|T |=k

∏
i∈T

Xi =
∑
T∈S1

∏
i∈T

Xi +
∑
T∈S2

∏
i∈T

Xi. (4.1)

In the first sum the variable Xj does not appear, but it is still a homogeneous polynomial of
degree k in the variables (Xi)i∈S\{j}. Hence∑

T∈S1

∏
i∈T

Xi =
∑

T⊆S\{j},
|T |=k

∏
j∈T

Xj = σk(S\{j}).

Obviously, the variable Xj appears in the second sum in the equation (4.1) in each summand
exactly once. Hence we can factor it out. After factoring it out, it remains a homogeneous
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polynomial of degree k − 1 in the variables (Xi)i∈S\{j}, which is the (k − 1)-th elementary
symmetric polynomial in (Xi)i∈S\{j}. It is∑

T∈S2

∏
i∈T

Xi = Xj ·
∑
T∈S2

∏
i∈T\{j}

Xi = Xj ·
∑

T⊆S\{j}
|T |=k−1

∏
i∈T

Xi = Xj · σk−1(S\{j}).

If we put the two sums together in the first equation (4.1), we get the claim.

It is also possible to determine σk only depending on σk−1.

4.1.2 Lemma. Let S ⊆ [n] denote a set of positive integers and k ∈ N a natural number. We
have

kσk(S) =
∑
j∈S

Xjσk−1(S\{j}).

Proof. We use the definition of the elementary symmetric polynomial σk(S) and with some
transformations, we get:

kσk(S) = k
∑
T⊆S
|T |=k

∏
i∈T

Xi

=
∑
T⊆S
|T |=k

∑
j∈T

∏
i∈T

Xi


=
∑
T⊆S
|T |=k

∑
j∈T

Xj

∏
i∈T\{j}

Xi

=
∑
j∈S

∑
T⊆S,
|T |=k,
j∈T

Xj

∏
i∈T\{j}

Xi

=
∑
j∈S

Xj

∑
T⊆S\{j},
|T |=k−1

∏
i∈T

Xi

=
∑
j∈S

Xjσk−1(S\{j}).

4.1.3 Definition. For a subset S ⊆ [n] and a polynomial p ∈ R[X], we define the derivative

∂Sp :=

(∏
i∈S

∂

∂Xi

)
p.

This is a repeated partial derivative (see Definition 1.3.2).
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4.1.4 Remark. The definition of ∂S is well-defined, because it does not matter in which order
we form the partial derivative.

We want to determine this kind of repeated partial derivative of the elementary symmetric
polynomials.

4.1.5 Lemma. Let S ⊆ [n] and k ∈ N. Then

∂Sσk =

{
σk−|S|([n]\S), if k ≥ |S|;
0, if k < |S|.

Proof. The statement follows directly from

∂

∂Xj
σl(S) =

∂

∂Xj

∑
T⊆S
|T |=l

∏
i∈T

Xi

 =
∑

T⊆S\{j}
|T |=l−1

∏
i∈T

Xi = σl−1(S\{j})

if l ≥ 1. If l = 0, the elementary symmetric polynomial σ0(S) = 1. So the partial derivative
vanishes.

4.2 Motivation

In this section, we want to prove that the second elementary symmetric polynomial has a spec-
trahedral hyperbolicity cone. This special case of the theorem shows how the idea of the proof
for the theorem came up. Afterwards, we only need to expand this idea to higher dimensions.
To show the case k = 2, we do not need the following parts in this generality. We define it in
this way because we will need it later on for the proof and the transformation in Proposition
4.2.3 shows us the motivation of the general proof.

4.2.1 Definition. Let S ⊆ [n] be any non-empty subset and k ∈ N such that k ≤ |S|. We
define

qk(S) :=
σk(S)

σk−1(S)
.

This is a rational function in R(X).

4.2.2 Lemma. For any non-empty set S ⊆ [n] and integer k ∈ N with 2 ≤ k ≤ |S| it holds

kqk(S) =
∑
j∈S

Xjqk−1(S\{j})
Xj + qk−1(S\{j})

.

Proof. We use the two previous lemmata 4.1.1 and 4.1.2. The first mentioned one, we apply to
the denominator and the second one to the numerator in the definition of qk(S), such that we
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get

kqk(S) =
kσk(S)

σk−1(S)

4.1.2
=

1

σk−1(S)
·
∑
j∈S

Xjσk−1(S\{j})

4.1.1
=
k≥2

∑
j∈S

Xjσk−1(S\{j})
σk−1(S\{j}) +Xjσk−2(S\{j})

=
∑
j∈S

Xj ·
σk−1(S\{j})
σk−2(S\{j})

· 1

Xj +
σk−1(S\{j})
σk−2(S\{j})

=
∑
j∈S

Xjqk−1(S\{j}) · 1

Xj + qk−1(S\{j})
.

This is the claimed statement.

4.2.3 Proposition. We have

2q2([n]) ·
n∏
j=1

(Xj + σ1([n]\{j})) = 2σ2σ
n−1
1 .

Proof. We consider a linear variable transformation. So we study the variables (Yj)j∈[n] such
that

Yj := q1([n]\{j}). (4.2)

If we study Yj , we see:

Yj = q1([n]\j) =
σ1([n]\{j})
σ0([n]\{j})

= σ1([n]\{j}). (4.3)

Let us rewrite the term 2q2([n]) as

2q2([n])
4.2.2
=

n∑
j=1

Xj · q1([n]\{j})
Xj + q1([n]\{j})

(4.2)
=

n∑
j=1

Xj · Yj
Xj + Yj

(4.4)

(4.3)
=

n∑
j=1

Xj · σ1([n]\{j})
Xj + σ1([n]\{j})

.

The factors Xj + σ1([n]\{j}) of the product mentioned in the lemma are

Xj + σ1([n]\{j}) 4.1.1
= σ1([n])

for every j ∈ [n]. Since Yj = σ1([n]\{j}) (see (4.3)), we can rewrite Yj in the denominator of the
fraction in equation (4.4). Hence for the complete left-hand side of the equation in the claim we
get

2q2([n]) ·
n∏
j=1

(Xj + σ1([n]\{j})) =

n∑
j=1

Xj · Yj
σ1([n])

·
n∏
j=1

σ1([n])

4.1.2
= 2σ2([n])σ1([n])n−1,

where we used Lemma 4.1.2 in the last step.
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Now we have a closer look at the transformations of the spanning tree polynomial if we exchange
edges. Especially, the equation (4.4) plays an important role.

4.2.4 Construction. Let G = (V,E, ε) be any (undirected) graph with a finite vertex-set V
such that |V | ≥ 2 and a finite edge-set E. We consider three types to exchange an edge in G.

(A) Let e ∈ E be an edge of the graph G with incident vertices r and s. We replace the edge e
by m ∈ N parallel edges e1, . . . , em such that e1, . . . , em /∈ E.

Figure 4.1: Edge between the vertices r and s, on the left-hand side in Graph G and on
the right-hand side replaced by m parallel edges in the new constructed graph
G′.

We call the new graph with m parallel edges G′ = (V ′, E′, ε′). This graph has almost
the same vertex set V but we delete the edge e and add the new (pairwise disjoint) edges
e1, . . . , em /∈ E. So the new edge-set is E′ = E\{e}

.
∪ {e1, . . . , em}. The incident vertices

of these edges are also r and s, i.e. ε′(ei) = {r, s} for all i ∈ [m].

Then the spanning tree polynomial TG′ of the new graph G′ is obtained by replacing Xe

in the spanning tree polynomial TG of the graph G by
m∑
j=1

Xej . This is because for every

spanning tree T of G with e ∈ ET , we get m different spanning trees T1, . . . , Tm of G′ each
using one of the edges e1, . . . , em. The other edges of the spanning trees T1, . . . , Tm are
the same as in T . All spanning trees T of G in which the edge e does not appear are also
spanning trees of the new graph G′.

Another possibility to see how the spanning tree polynomial changes is to use the Laplacian.
Let LG = (lij)i,j∈[n] be the Laplacian of G (3.2.1) and LG′ = (l′ij)i,j∈[n] the Laplacian of
G′. The only entries changing are the two diagonal-entries corresponding to the vertices
r and s and the two entries corresponding to the connection between the vertices r and s.
These entries change exactly in the way that all edge-variables Xe in LG are replaced by

the sum
m∑
j=1

Xej in LG′.

(B) Instead of m parallel edges, we replace the edge e ∈ E with ε(e) = {r, s} in G by a path
r, e′, v, e′′, s.

Figure 4.2: The edges e′ and e′′ build a path between the vertices r and s which replaces
the edge e in the graph G.
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The vertex v is supposed to be a new vertex and the edges e′, e′′ should not be contained
in E. So v /∈ V and the new vertex-set considered for the new graph G = (V ,E, ε) is

the set V = V
·
∪ {v}. The edge-set of G is E = E\{e}

.
∪ {e′, e′′} with ε(e′) = {r, v} and

ε(e′′) = {v, s}. The new spanning tree polynomial TG of G is obtained by replacing the

edge variable Xe of the initially edge e in TG by
Xe′Xe′′
Xe′+Xe′′

and multiply TG with Xe′ +Xe′′.

From the spanning trees of G, we obtain the spanning trees of the new constructed graph
as follows. Each spanning tree of G containing the edge e gives a spanning tree of G.
For these spanning trees, the spanning tree polynomial changes by replacing Xe by Xe′Xe′′.
Considering the spanning trees of G without the edge e, we see that we must add a new edge,
such that the new vertex v is connected to the others as well. There are two possibilities
for this. Either we use e′ or e′′ to get a spanning tree of G. So for each spanning tree of
G without e we get two spanning trees of G′. This is the reason why we need to multiply
the summands corresponding to those spanning trees of the spanning tree polynomial TG
with Xe′ + Xe′′. It is also possible to verify this by using the Laplacian of G and G and
study how the entries differ. Please note that G has a vertex more than G such that the
Laplacian LG has one dimension more than LG.

(C) In the last step, we put (A) and (B) together and replace the edge e ∈ E with incident
vertices r and s by a series of m ∈ N parallel paths as in (B). We get a subgraph of the
form

Figure 4.3: The edge e between the vertices r and s replaced by a series of m parallel
paths. These new edges are assigned with the noted edge-variables.

between the vertices r and s with m new vertices and 2m new edges as in Figure 4.3. We
first replace the edge e by m ∈ N parallel edges as in (A) and in the next step we replace
each of these edges by a path of length 2 as in (B). The new spanning tree polynomial

comes from the spanning tree polynomial TG of G with Xe replaced by
m∑
i=1

XiYi
Xi+Yi

and TG

multiplied by
m∏
i=1

(Xi + Yi).

It is not by chance that the transformation of the spanning tree polynomial in (C) looks like
a part of equation (4.4). We use this similarity for the proof.

4.2.5 Proposition. [Brä13, p.5]. The hyperbolicity cone of σ2 is spectrahedral.

Proof. We actually show that σ2σ
m−1
1 is a determinantal polynomial. As seen in the construction



62 4 Hyperbolicity Cones of Elementary Symmetric Polynomials are Spectrahedral

(C) the spanning tree polynomial of a graph as considered in Figure 4.3 is

m∏
i=1

(Xi + Yi)

m∑
i=1

Xi · Yi
Xi + Yi

.

This is by Proposition 4.2.3 exactly σ2σ
n−1
1 with Yj chosen as the linear transformation Yj =

q1([n]\{j}) for every j ∈ [n]. With the Matrix-Tree Theorem, we get that σ2σ
n−1
1 is a deter-

minantal polynomial because it is a spanning tree polynomial of a connected graph. Therefore
it is spectrahedral (3.3.2). Note that a linear transformation of a spectrahedral cone stays a
spectrahedral cone. To see that the hyperbolicity cone of σ2 is spectrahedral, we need to show
that Λ(σ2,1) ⊆ Λ(σ1,1). This follows directly with the next lemma. So with Theorem 4.0.1 the
proposition is shown.

4.2.6 Lemma. For any k ∈ [n − 1] the hyperbolicity cones of the elementary symmetric poly-
nomial σk+1 is contained in the one of σk.

Proof. We need to show Λ(σk+1,1) ⊆ Λ(σk,1). This is immediate by

D1σk+1 =
n∑
i=1

∂

∂Xi

∑
S⊆[n],
|S|=k+1

∏
j∈S

Xj

=

n∑
i=1

∑
S⊆[n],
|S|=k+1

∂

∂Xi

∏
j∈S

Xj︸ ︷︷ ︸
=0, if i/∈S

=
n∑
i=1

∑
S⊆[n],
|S|=k+1,
i∈S

∂

∂Xi

∏
j∈S

Xj

=

n∑
i=1

∑
S⊆[n],
|S|=k+1,
i∈S

∏
j∈S\{i}

Xj

=
n∑
i=1

∑
S⊆[n]\{i},
|S|=k

∏
j∈S

Xj

︸ ︷︷ ︸
=σk([n]\{i})

= (n− k)σk.

This shows Λ(σk+1,1)
1.3.5
⊆ Λ(D1σk+1,1) = Λ(σk,1) because σk+1 hyperbolic in direction 1.

4.2.7 Remark. Although, we used a linear transformation of the variables, this does not change
anything for a cone to be spectrahedral.

It is easy to see that the first elementary symmetric polynomial is spectrahedral. Now, we
also showed that the second one is spectrahedral. The idea presented in the proof above, we
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want to use to show this for all elementary symmetric polynomials. For this, we need to make
the construction of the graph in a higher degree. This we do by recursively exchange edges by
graphs as in Figure 4.3.

4.3 Recursive construction of Gn,k

In this section, we want to define a graph such that the corresponding spanning tree polynomial
fulfils the necessary conditions to apply Theorem 4.0.1. For this, we define recursively graphs
Gn,k for n ≥ k ≥ 0. A linear transformation of the corresponding spanning tree polynomial of
Gn,k has the (k + 1)-th elementary-symmetric polynomial σk+1 as a factor.

We have already seen the proof for the second elementary symmetric polynomial. Now, we
want to extend this construction to higher degrees. For this, we recursively replace an edge in a
graph by a subgraph as in Figure 4.3 and again by replacing one of those new edges by another
subgraph. This we want to define more precisely in the following definition.

4.3.1 Definition. [Brä13, p.5]. We recursively construct a family of graphs (Gn,k)n≥k≥0. For
this recursion, we start with the base case Gn,0. This is a graph with two vertices and one
connecting edge. So Gn,0 = (Vn,0, En,0, εn,0) has the vertex-set Vn,0 = {s, z} and edge-set
En,0 = {e} such that εn,0(e) = {s, z}.

Figure 4.4: Graph Gn,0 consisting out of two vertices s and z and a connecting edge.

The graph Gn,k for any k ≥ 1 depends on the graph Gn,k−1. We obtain Gn,k by replacing each
edge e ∈ En,k−1 with z ∈ εn,k−1(e) by a graph as in Figure 4.3 with m := n− k + 1.

4.3.2 Example. Let’s have a look, how these graphs look like. We consider the graph G3,k

for k = 1 and k = 2. The graph G3,0 is exactly the one drawn in Figure 4.4. Since this graph is
independent of the integer n. In the second step, we replace the edge e of the graph G3,0 by a
graph as the one in Figure 4.3 with m = 3− 1 + 1 = 3.

Figure 4.5: The graph G3,1 with edges coloured which are incident to the vertex z.

The following graph G3,2 is obtained by replacing each of the edges incident to z in G3,1 (see
the coloured edges in Figure 4.5) by another graph as in Figure 4.3 with m = 3− 2 + 1 = 2
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Figure 4.6: The graph G3,2 constructed out of G3,1 (see Figure 4.5).

Finally, the graph G3,3 looks similar to the graph G3,2 but the six edges incident to z are
subdivided by another vertex.

This recursive construction is nice to see, but in order to work with these graphs it is also
helpful to have a more explicit description of the graphs Gn,k for n ≥ k ≥ 0. In the base case
k = 0 we already achieved an explicit construction by definition.

So now, we are only interested in the case n ≥ k ≥ 1. For this reason, we label the vertices.

4.3.3 Proposition. The graphs Gn,k for n ≥ k ≥ 1 consist out of the vertices

Vn,k = {s, z} ∪ {a : a = a1a2 · · · al word such that 1 ≤ l ≤ k, aj ∈ [n] for all j ∈ [l]

and ai 6= aj for all 1 ≤ i < j ≤ l}

and edges are between the vertices

(1) s and i for all 1 ≤ i ≤ n,

(2) a1 · · · ai−1 and a1 · · · ai−1ai for all 2 ≤ i ≤ k if a1 · · · ai−1, a1 · · · ai−1ai ∈ Vn,k and

(3) a1 · · · ak and z for all a1 · · · ak ∈ Vn,k.

Proof. Follows by the construction of the graphs.

4.3.4 Example. The graph G3,3 with labelled vertices is:

.
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For all r ∈ N0 with k ≤ r ≤ n− 1, we consider edge-weights (n is fixed). In the base case, we
define the weight of the edge e with ε(e) = {s, z} to be

(r + 1)!qr+1([n]) = (r + 1)!
σr+1

σr
. (4.5)

This is a rational function in R(X). The polynomial we are actually interested in is then a
linear transformation of the standard spanning tree polynomial as we will see later on. The
additional integer r, we need to get the recursion running. In the end, we are only interested in
the spanning tree polynomial with r = k. First, we define a rational function which is a linear
transformation of the spanning tree polynomial of the graphs Gn,k.

4.3.5 Definition. We define the rational function Hk,r for any 0 ≤ k ≤ n and r ≥ k to be the
spanning tree polynomial TGn,k of the graph Gn,k as defined above with edge-weight function
w : En,k → R(X), where

(a) w(e) = r!Xi if ε(e) = (s, i) as in case (1) above,

(b) w(e) = (r − k + 1)!Xai if e is an edge between a1 · · · ai−1 and a1 · · · ai−1ai as in case (2)
and

(c) w(e) = (r−k+1)!qr−k+1([n]\{a1, . . . , ak}) for an edge e as in case (3) between the vertices
a1 · · · ak and z or if k = 0 the edge-weight of the only existing edge (compare to 4.5).

4.3.6 Remark. We want to study the spanning tree polynomial of a graph using edge-weights
instead of just assigned edge variables. These spanning tree polynomials come from the usual
spanning tree polynomial as defined in 3.2.5 evaluated at (w(e))e∈E . The result is not necessary
a polynomial. In this case it is a rational function.

4.3.7 Remark. If we consider the rightmost piece of a graph Gn,k with the edge-weights as
mentioned in Definition 4.3.5 and we replace one of those subgraphs by a single edge, the new
edge variable is the same as the one we would assign to the edge in Gn,k−1 using Definition 4.3.5
as we see soon.

Figure 4.7: A rightmost piece of the graph Gn,k with edge-weights.

With 4.2.4 (C), we get the edge-weight of Gn,k with the above piece replaced as just a single
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edge between the vertices a1a2 · · · ak−1 and z. It is∑
ak∈[n]\{a1,...,ak−1}

(r − k + 1)!Xak · (r − k + 1)!qr−k+1([n]\{a1, . . . , ak})
(r − k + 1)!Xak + (r − k + 1)!qr−k+1([n]\{a1, . . . , ak})

= (r − k + 1)!
∑

ak∈[n]\{a1,...,ak−1}

Xak · qr−k+1([n]\{a1, . . . , ak})
Xak + qr−k+1([n]\{a1, . . . , ak})

4.2.2
= (r − k + 1)! · (r − k + 2) qr−k+2([n]\{a1, . . . ak−1})
= (r − (k − 1) + 1)! qr−(k−1)+1([n]\{a1, . . . ak−1}).

This is exactly the edge-weight we would assign to this edge in the graph Gn,k−1.
The spanning tree polynomial of the two graphs mentioned above are in general not equal.

We need to multiply the polynomial with another factor (see 4.2.4 (C)).

4.4 Proof of the theorem

In this last section, we want to prove the theorem:

4.4.1 Theorem. Hyperbolicity cones of elementary symmetric polynomials are spectrahedral.

The proof presented for this theorem is orientated at the proof of Brändén [Brä13].

4.4.2 Definition. [Brä13, p.7]. To make the notation more readable, we introduce some short-
cuts. We write for any finite set S and any integer j ∈ N(

S

j

)
:= {U ⊆ S : |U | = j}

for the set of all subsets of S of cardinality j. Furthermore for 0 ≤ k ≤ r ≤ n, we have

γk,r :=
∏

S∈( [n]
n−k)

σr−k(S)k!.

4.4.3 Remark. It is easy to see that

γk,r
def.
=

∏
S∈( [n]

n−k)

σr−k(S)k! =
∏

S∈([n]
k )

σr−k([n]\S)k!.

4.4.4 Lemma. [Brä13, p.7, Lemma 2.3]. Let 0 ≤ k ≤ r ≤ n−1 be non-negative integers. Then
there are positive constants Ck,r such that

H0,r = C0,r
σr+1

σr

and

Hk,r = Ck,rHk−1,r
(γk−1,r)

n−k+1

γk,r

for all k > 0.
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Proof. The first statement follows directly from the definition of the graph Gn,k and the edge-
weight assigned in Definition 4.3.5. In this case, C0,r is the factorial (r + 1)! which is obviously
positive.

For k > 0, we consider the graph Gn,k with the specified edge-weights. As we have seen in
4.3.7, substitute a rightmost part of the graph by a single edge leads to the same edge-weight
as the one in Gn,k−1. So if we substitute all of those rightmost parts, we get

Hk,r = Qk,r ·Hk−1,r,

where Qk,r is the product of all factors mentioned in 4.2.4 (C).
So now we want to determine the rational function Qk,r.

For every word a1a2 · · · ak ∈ Vn,k, we get the factor

(r − k + 1)!Xak + (r − k + 1)!qr−k+1([n]\{a1, a2, . . . , ak})

= (r − k + 1)!

(
Xak +

σr−k+1([n]\{a1, a2, . . . , ak})
σr−k([n]\{a1, a2, . . . , ak})

)
= (r − k + 1)!

Xakσr−k([n]\{a1, a2, . . . , ak}) + σr−k+1([n]\{a1, . . . , ak})
σr−k([n]\{a1, . . . , ak})

4.1.1
= (r − k + 1)!

σr−k+1([n]\{a1, . . . , ak−1})
σr−k([n]\{a1, . . . , ak})

.

For k pairwise different elements a1, . . . , ak ∈ [n] there are exactly k! possibilities to order them.
Hence the factor σr−k([n]\{a1, . . . , ak}) appears exactly k! times in the denominator of Qk,r.
This leads to the denominator γk,r in the claim.

Just with the same argument, there are (k − 1)! possibilities to order the a1, . . . , ak−1 to a
word, so the factor σr−k+1([n]\{a1, . . . , ak−1}) appears (k− 1)! in the numerator of the rational
function Qk,r, which coincides with the factor γk−1,r mentioned in the claim. For every word
consisting of the elements a1, . . . , ak−1 there are n− (k − 1) = n− k + 1 possibilities to choose
the next letter ak to get a word of length k with pairwise different letters. This leads to the
exponent n− k + 1. The constant Ck,r consists of the product of all factorials appearing, such
that it is a positive integer.

Furthermore, we are able to determine the polynomial Hk,k, which we are mainly interested
in.

4.4.5 Lemma. [Brä13, p.8, lemma 2.4]. For any integers k ∈ N with 1 ≤ k ≤ n − 1 the
spanning tree polynomial Hk,k has the elementary symmetric polynomial σk+1 as a factor and
we are also able to determine the other factors. We show that the factorisation is

Hk,k = Ckσk+1

∏
S⊆[n],
|S|≤k−1

(
∂Sσk

)|S|!(n−|S|−1)
,

where Ck is a positive constant and ∂Sσk =

(∏
j∈S

∂
∂Xj

)
σk as defined in 4.1.3.
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Proof. By iterated application of Lemma 4.4.4, we see that the polynomial Hr,r for any r ≤ n−1
looks like

Hr,r = cr

 r∏
j=1

(γr−j,r)
n−r+j

γr−j+1,r

H0,r, (4.6)

where cr is the product of all positive constants Cj,r for j ∈ {1, . . . , r}, so it is again a positive
constant. The product in equation (4.6) can be simplified as

r∏
j=1

(γr−j,r)
n−r+j

γr−j+1,r

=
(γr−1,r)

n−r+1

γr,r
· (γr−2,r)

n−r+2

γ(r−1),r
· · · (γ1,r)

n−2

γ2,r
· (γ0,r)

n

γ1,r

=
(γ0,r)

n

γr,r

r−1∏
j=1

(
γ(r−j),r

)n−r+j−1
. (4.7)

With the definition of γk,r (Definition 4.4.2), we get

γ0,r =
∏

S∈([n]
n )

σr(S) = σr and (4.8)

γr,r =
∏

S∈( [n]
n−r)

σ0(S)︸ ︷︷ ︸
=1

r! = 1. (4.9)

Another application of Lemma 4.4.4 for H0,r gives us

H0,r = C0,r
σr+1

σr
. (4.10)

Inserting (4.7) - (4.10) in (4.6) shows

Hr,r = Cr · σr+1

r∏
j=1

(γr−j+1,r)
n−r+j−1 = Cr · σr+1

r−1∏
j=0

(γj,r)
n−j−1 . (4.11)

As we think of Lemma 4.1.5, we are able to rewrite the part ∂Sσk as

∂Sσr = σr−|S|([n]\S) (4.12)

for all S ⊆ [n] such that |S| ≤ r. So all in all we get

r−1∏
j=0

(γj,r)
n−j−1 4.4.3

=

r−1∏
j=0

 ∏
S∈([n]

j )

σr−j([n]\S)j!


n−j−1

=
∏
S⊆[n]
|S|≤r−1

σr−|S|([n]\S)|S|!(n−|S|−1)

(4.12)
=

∏
S⊆[n]
|S|≤r−1

∂Sσr([n]\S)|S|!(n−|S|−1).

So after all the transformations, we finally get the claim.
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4.4.6 Remark. We are only interested in the spanning tree polynomial Hk,k but still we intro-
duced a new integer r and defined the spanning tree polynomial Hk,r. The reason that we were
in need of this integer r for the edge-weights was the last lemma. In the proof for this lemma
we used recursively the previous lemma Hj,r with decreasing j.

4.4.7 Definition. For any open and connected set U ⊆ Rn, Pn,m(U) denotes the space of all
hyperbolic polynomials of degree m ∈ N in R[X] = R[X1, . . . , Xn] such that p ∈Pn,m(U) if and
only if for all d ∈ U the polynomial p is hyperbolic in direction d.

4.4.8 Remark. In the definiton above, we assumed U is connected. This is the reason why for
all p ∈Pn,m(U) there is a direction d such that U ⊆ Λ(p,d).

4.4.9 Lemma. [Brä13, Lemma 2.5]. For any open and connected set U ⊆ Rn the space
Pn,m(U) ∪ {0} is closed under point-wise convergence.

For the proof of this lemma, we need two theorems from complex analysis. For the proof of
Rouchés Theorem, we refer to [APP11, Theorem 37.2].

4.4.10 Lemma (Rouché’s Theorem). Let f and g be two analytic functions on a domain, i.e.
a connected open subset D ⊆ C such that

|f(z)| > |g(z)|

for all z on a simple closed contour γ in D. Then f and f + g have the same number of zeros
inside the contour γ (with multiplicities).

4.4.11 Lemma (Hurwitz’s Theorem). [Cho+02, p.96] and [APP11, Theorem 37.4]. If D is a
domain, i.e. a connected open subset of Cn and (fk)k∈N a sequence of non-vanishing analytic
functions on D converging uniformly to f on all compact subsets of D, then f is either non-
vanishing on D or f = 0.

Proof. First, we show the special case for n = 1 of Hurwitz’s Theorem. We need to prove that
f(z) 6= 0 for all z ∈ D ⊆ C if f 6= 0. Assume f 6= 0 but f(a) = 0 for an a ∈ D. We want to
show that there is an n0 ∈ N such that fn has a zero in D for all n ≥ n0 .

Let δ > 0 such that Bδ(a) := {x ∈ C : |x − a| < δ} ⊆ D and f
∣∣
∂Bδ(a) never vanishes. Now,

take ε := inf
z∈∂Bδ(a)

|f(z)| > 0. Since (fn)n∈N converges uniformly to f , there exists an n0 ∈ N

such that for all n ≥ n0 and for all z ∈ ∂Bδ(a)

|fn(z)− f(z)| < ε.

Furthermore, by definition of ε the inequality ε ≤ |f(z)| for all z ∈ ∂Bδ(a) holds. Both together
implies

|fn(z)− f(z)| < |f(z)|

for all z ∈ ∂Bδ(a) and all n ≥ n0. Rouché’s Theorem 4.4.10 implies that f and (fn−f)+f = fn
have the same number of zeros in ∂Bδ(a) for all n ≥ n0. So fn has a root in D. This is a
contradiction to the assumption. So the special case for n = 1 is proved.
Now, let n ∈ N be an arbitrary integer. Again, we assume there is a zero a = (a1, . . . , an) ∈
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D ⊆ Cn with f(a) = 0. Again, we find a ball Bδ(a) ⊆ D ⊆ Cn. Applying Hurwitz’s Theorem
for n = 1, we see that f(z1, a2, . . . , an) = 0 for all z1 ∈ C such that (z1, a2, . . . , an) ∈ Bδ(a).
For all those n-tuples (z1, a2, . . . , an), we apply Hurwitz’s Theorem for the case n = 1 again
and get f(z1, z2, a3, . . . , an) = 0 for all z2 ∈ C such that (z1, z2, a3, . . . , an) ∈ Bδ(a). Repeated
application shows f

∣∣
Bδ(a) = 0. Since f is analytic f = 0 in D.

Proof of Lemma 4.4.9. First, we show that a homogeneous polynomial p ∈ R[X] of degree m
belongs to Pn,m(U) if and only if for all z ∈ U + iRn := {x + iy : x ∈ U ∧ y ∈ Rn} the
polynomial is non-vanishing, i.e. p(z) 6= 0.

If p ∈Pn,m(U), the polynomial p is hyperbolic in direction d for every d ∈ U . Then for every
z = d + iy ∈ U + iRn, we get p(z) = p(d + iy) = (−i)mp(−y + id) 6= 0 by the homogeneity
and the definition of the hyperbolicity because for a hyperbolic polynomial p in direction d the
univariate polynomial p(x + Td) has only real zeros if x is a real vector.

Conversely, if p is not in Pn,m(U), there is a direction d ∈ U such that p is not hyperbolic in
direction d. So p(x + Td) has a zero a+ ib ∈ C with a, b ∈ R and b 6= 0 for any x ∈ Rn. So

0 = p(x + (a+ ib)d) = (ib)mp(d− ib−1x− aib−1d)

such that p(d− i(b−1x + ab−1d︸ ︷︷ ︸
∈Rn

)) = 0, so p fails to be non-vanishing on U + iRn.

Now let (pk)k∈N be a sequence of polynomials in Pn,m(U) which converges point-wise to p, i.e

∀x ∈ Cn : lim
k→∞

|pk(x)− p(x)| = 0. (4.13)

The space of all homogeneous polynomials of degree m unified with the zero polynomial is
closed under point-wise convergence, so p is a homogeneous polynomial of degree m if not the
zero polynomial and it remains to prove that p is hyperbolic in every direction e ∈ U or p = 0
(in R[X]).

To show this, we want to apply Hurwitz’ Theorem 4.4.11. We choose D = U + iRn to be the
domain. For all k ∈ N the polynomials pk are in Pn,m(U), so by the statement shown above all
pk are non-vanishing on D. This implies that for all z ∈ D, ‖ · ‖z : Pn,m(U) ∪ {0} → R≥0, p 7→
‖p‖z = |p(z)| is a norm on Pn,m(U) ∪ {0}. Furthermore, for every compact subset C ⊆ D,
‖ · ‖C : Pn,m(U)→ R≥0 ≥ 0, p 7→ ‖p‖C = sup

z∈C
|p(z)| = max

z∈C
|p(z)| is another norm on Pn,m(U).

On a finite-dimensional vector space all norms are equivalent, so with pk
k→∞→ p point-wise, pk

converges also uniformly to p on any compact subset C ⊆ D. Now, we are able to apply the
Hurwitz’ Theorem. This says that p is either non-vanishing on D or p = 0 in D. The first part
says by the statement above p ∈ Pn,m(U). Hence in each case, we get p ∈ Pn,m(U) ∪ {0}. It
is shown that the limit of an arbitrary point-wise converging sequence is in the set itself, so it is
closed under point-wise convergence.

4.4.12 Lemma. [Brä13, Lemma 2.6]. Let p ∈ R[X] be a hyperbolic polynomial with respect to
the direction d ∈ Rn and let v be any point from the hyperbolicity cone Λ(p,d) such that Dvp 6= 0
(in R[X]). Then the directional derivative Dvp is hyperbolic in direction d and Λ(p,d) ⊆
Λ(Dvp,d).

Proof. Consider a polynomial p, hyperbolic with respect to d ∈ Rn and any point v ∈ Λ(p,d)
such that Dvp 6= 0. We split the proof into two parts.
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In the first case, we assume that v is in an interior point of the (closed) hyperbolicity cone
Λ(p,d). By Theorem 1.2.14, it follows that p is hyperbolic in direction v and Λ(p,d) = Λ(p,v).
Now, we are able to apply Proposition 1.3.5 and get the inclusion Λ(p,v) ⊆ Λ(Dvp,v). Since
d ∈ Λ(p,d) = Λ(p,v), the direction d is also in the open hyperbolicity cone Λ(Dvp,v) such
that Theorem 1.2.14 says that Dvp is hyperbolic in direction d and Λ(Dvp,v) = Λ(Dvp,d).
Altogether, it follows Λ(p,d) ⊆ Λ(Dvp,d) and this implies the inclusion for the closures
Λ(p,d) ⊆ Λ(Dvp,d).

In the second case, we consider v to be a point of the boundary of Λ(p,d). This means by

definition of the boundary, that there is a sequence (vk)k∈N ⊆ Λ(p,d) such that vk
k→∞→ v. As

shown above, Dvkp ∈ Pn,m(Λ(p,d)) for all k ∈ N and obviously Dvkp
k→∞→ Dvp (point-wise).

By Lemma 4.4.9 the space Pn,m(Λ(p,d))∪{0} is closed under point-wise convergence, such that
Dvp ∈ Pn,m(Λ(p,d)) ∪ {0}. We assumed that Dvp 6= 0, so Dvp ∈ Pn,m(Λ(p,d)). This means
for any x ∈ Λ(p,d), the polynomial Dvp is hyperbolic in direction d and so x ∈ Λ(Dvp,d).

With all the previous work, we are finally able to prove the main result of this work.

4.4.13 Theorem. The hyperbolicity cones of elementary-symmetric polynomials are spectrahe-
dral.

Proof of the theorem. It is easy to show that σ1 is spectrahedral because this is a linear poly-
nomial (see 1.2.9 (1)). So WLOG, we choose an elementary symmetric polynomial σk+1 for any
k ∈ [n − 1]. Now consider the graph Gn,k = (V,E, ε) as defined in 4.3.1. The corresponding
spanning tree polynomial is

Hk,k = Ckσk+1

∏
S⊆[n],
|S|≤k−1

(
∂Sσk

)|S|!(n−|S|−1)
,

see 4.4.5. With the Matrix-Tree Theorem 3.2.6, we know there are positive semi-definite matrices

(Ae)e∈E such that Hk,k = det

(∑
e∈E

XeAe

)
. If we evaluate the spanning tree polynomial Hk,k

at 1 = (1)e∈E , we get the number of spanning tree of Gn,k. Since Gn,k is connected, there is at
least one spanning tree. Hence

det

(∑
e∈E

Ae

)
∈ N.

So A :=
∑
e∈E

Ae is a positive definite matrix.

A more detailed look at the definition of the edge-weights assigned to the edges in the graph
Gn,k (Definition 4.3.5) for r = k shows that the weight of the edge incident to z and a1 · · · ak is

q1([n]\{a1, . . . , ak}) = σ1([n]\{a1, . . . , ak}) =
∑

j∈[n]\{a1,...,ak}

Xj .

They are only linear in the variables X1, . . . , Xn, so there is a possibility to write Hk,k =

det
n∑
j=1

XjBj with positive semi-definite matrices B1, . . . , Bn. The matrix B :=
n∑
j=1

Bj is positive
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definite because detB = det

(
n∑
j=1

Bj

)
= Hk,k(1) 6= 0. It remains to prove the inclusion

Λ(σk+1,1) ⊆ Λ(∂Sσk,1) for any subset S ⊆ [n] with |S| ≤ k − 1. Then we apply Theorem
4.0.1 and conclude the claim. This is enough because the hyperbolicity cone of a product of
hyperbolic polynomials is the intersections of the hyperbolicity cone of its factors 1.3.1.

The subset relation Λ(σk+1,1) ⊆ Λ(σk,1), we have already shown in Lemma 4.2.6. Since the
open hyperbolicity cone Λ(σk,1) of any elementary symmetric polynomial contains the whole
orthant including the vector 1, the closure Λ(σk,1) contains the positive coordinate axis and
especially ek (standard basis vector) for every k ∈ [n]. Furthermore by definition, it is ∂Sσk =(∏
i∈S

Dei

)
σk, so with repeated application of Lemma 4.4.12 it holds Λ(σk,1) ⊆ Λ(∂Sσk,1).

This theorem was the aim of this thesis but still we are going to state an important corollary.
But first we need to prove another lemma.

4.4.14 Lemma. [Ren06, Proposition 18]. Let p ∈ R[X] be a hyperbolic polynomial of degree
m ∈ N, hyperbolic with respect to d ∈ Rn. For each 0 ≤ k ≤ m the k-th directional derivative of
p in direction d ∈ Rn is determined by

D
(k)
d p(x) = k!p(d)σm−k(λ1(d,x), . . . , λm(d,x))

for every x ∈ Rn. In this case the elementary symmetric polynomials σm−k, 0 ≤ k ≤ m are in
m variables.

Proof. As we have seen in the proof of 1.3.5 for any polynomial p the evaluation of the directional
derivative (Ddp)(x+Td) is the same as the usual formal derivative of p(x+Td). By induction,
it follows

(D
(k)
d p)(x + Td) = (p(x + Td))(k)

for any integer k with 0 ≤ k ≤ m. So if we recall the presentation of p(x + Td), we get

p(x + Td) = p(d)

m∏
j=1

(T + λj(d,x)) = p(d)

m∑
j=0

T jσm−j(λ1(d,x), . . . , λm(d,x)).

In this case the elementary-symmetric polynomials are in m variables So for the k-th directional
derivative it follows

(D
(k)
d p)(x + Td) = (p(x + Td))(k) = p(d)

m∑
j=k

j!

(j − k)!
T j−kσm−j(λ1(d,x), . . . , λm(d,x))

= p(d)

m−k∑
j=0

(j + k)!

j!
T jσm−j−k(λ1(d,x), . . . , λm(d,x)). (4.14)

Evaluating the univariate polynomial in equation (4.14) at 0 shows(
(D

(k)
d p)(x + Td)

)
(0) = p(d)k!σm−k(λ1(d,x), . . . , λm(d,x)).
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As we have seen in Example 1.2.9 (1), the hyperbolicity cones of polynomials of the form

p =
m∏
j=1

lj for linear polynomials lj ∈ R[X] are polyhedral. So it is natural to ask what happens

to the derivative cone of a polyhedral cone. The first derivative cone was studied by Sanyal
[San11]. Using the Theorem 4.4.13, we are finally able to answer this question for any k ∈ [m−1].

4.4.15 Corollary. The derivative cones of polyhedrals are spectrahedral. This means, for a

homogeneous polynomial p ∈ R[X1, . . . , Xn] with linear factorisation p =
m∏
j=1

lj, where all lj ∈

R[X1, . . . , Xn], j ∈ [m], are linear and homogeneous with p(d) 6= 0 for a point d ∈ Rn, the

derivative cone Λ(D
(k)
d p,d) is spectrahedral for all 1 ≤ k ≤ m− 1.

Proof. The polynomial p is the m-th elementary symmetric polynomial in m variables evaluated
in the m linear homogeneous polynomials l1, . . . , lm. This means

p = σm(l1, . . . , lm).

Since p(d) 6= 0, no linear factor li, i ∈ [m] vanishes at the point d ∈ Rn, so σm(l1(d), . . . , lm(d) 6= 0,
which implies that σm is hyperbolic in direction (l1(d), . . . , lm(d). From this we can conclude
with

p(x + Td) = σm(l1(x + Td), . . . , lm(x + Td))

= σm(l1(x) + T l1(d), . . . , lm(x) + T lm(d))

= σm(l1(d), . . . , lm(d))
m∏
j=1

(T + λj ((l1(d), . . . , lm(d)), (l1(x), . . . , lm(x)))

that p is hyperbolic in direction d. Since σm is hyperbolic, the eigenvalues λj ((l1(d), . . . , lm(d)),y)
are real for all y ∈ Rm and because the linear polynomials li have real coefficients the point
(l1(x), . . . , lm(x)) is real for every x ∈ Rn. Therefore the eigenvalues of p are real.

Applying L Lemma 4.4.14, we get for the k-th directional derivative in direction d the presen-
tation:

D
(k)
d p = k!p(d)σm−k(l1, . . . , lm).

for any k ∈ [m− 1].
By theorem the hyperbolicity cone Λ(σm, (l1(d), . . . , lm(d))) is spectrahedral. So there are
symmetric matrices A1, . . . Am such that there exists a vector y = (y1, . . . , ym) ∈ Rm with
m∑
i=1

yiAi � 0 and Λ(σm, (l1(d), . . . , lm(d))) = {x ∈ Rm :
m∑
i=1

xiAi � 0}. Using this representation
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of the hyperbolicity cone, we see that

Λ(d, σm(l1, . . . , lm)) = {x ∈ Rn : l(x) ∈ Λ((l1(d), . . . , lm(d)), σm)}

=

{
x ∈ Rn :

m∑
i=1

li(x)Ai � 0

}

=

x ∈ Rn :
n∑
j=1

xj

(
m∑
i=1

ci,jAi

)
� 0


=

x ∈ Rn :
n∑
j=1

xjBj � 0


where we used li =

n∑
j=1

ci,jXj for all i ∈ [m] and some real coefficients ci,j . Furthermore

Bj :=
m∑
i=1

ci,jAi are symmetric matrices for all j ∈ [n].

It remains to show that there is a vector z = (z1, . . . , zn) ∈ Rn such that
n∑
j=1

zjBj � 0 which

follows directly from the fact that

(l1(d), . . . , lm(d)) ∈ Λ(σk, (l1(d), . . . , lm(d))) =

{
x ∈ Rm :

m∑
i=1

xiAi � 0

}

see 1.2.3.
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